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1. EXECUTIVE SUMMARY 

The reconstruction of US Highway 93 (US 93) on the Flathead Indian Reservation in 
northwestern Montana provides an opportunity to evaluate how wildlife crossing structures and 
wildlife fencing affect animal-vehicle collisions (AVCs) and wildlife movements in a multiple-
use rural landscape.  The Confederated Salish and Kootenai Tribes (CSKT), the Federal 
Highway Administration (FHWA), and the Montana Department of Transportation (MDT) 
signed a Memorandum of Agreement (MOA; Skillings Connolly 2000) for the reconstruction of 
46 miles (74 km) of US 93 from Evaro to Polson.  The reconstruction will include installations of 
42 fish and wildlife crossing structures and approximately 15 miles (24 km) of wildlife exclusion 
fencing for a total investment of over $9 million, an unprecedented level of wildlife mitigation 
efforts on a single reconstruction project in North America.   

Additionally, the MOA commits to monitoring and evaluating animal-vehicle collision (AVC) 
incidents and wildlife movements across the highway before and after the mitigation measures 
are installed.  Funded by FHWA and MDT, the Western Transportation Institute at Montana 
State University-Bozeman (WTI) was contracted to oversee preconstruction baseline field data 
collection and to document a “case study” highlighting significant events and decision-making 
processes that shaped the planning and design of the mitigation measures.  Specifically, the 
objectives of the evaluation study are to:   

• Determine what effect US 93 wildlife crossing structures and fencing have on the 
frequency of AVCs and animal highway crossings; 

• Document the design decision-making processes and lessons learned as a “case study”; 
and 

• Identify best management practices and further research. 

This report details the preconstruction field study efforts and the history of the reconstruction 
design process.  The summary below recaps each chapter in the main report including the 
literature review, project history and case study, the preconstruction field study, other US 93 
preconstruction road ecology research efforts, measures of effectiveness and post-construction 
monitoring recommendations, and final conclusions.  

Literature Review 
The Literature Review focused on published papers, peer-reviewed journal articles and reports 
regarding locating, designing and evaluating the effectiveness of wildlife crossing structures and 
exclusion fencing.  The review found that there are several methods that can be used to 
determine optimal locations for wildlife crossing structures.  These methods utilize road-kill and 
AVC data, Geographic Information System-based landscape analysis, expert opinion, and site- 
and species-specific field studies.  Ideally, one would use a combination of these approaches in 
order to “cross check” their outcomes; e.g., AVC data, coarse-scale GIS analysis and/or expert 
opinion may be used at a coarse-scale on stretches of road that may be candidates for wildlife 
mitigation, and then more intensive fine-scale analysis could be performed to determine more 
precise optimal location. 

Although numerous other techniques have been applied in an attempt to reduce AVCs, wildlife 
fencing, in combination with wildlife passages appears to have the most promise for improving 
driver safety and maintaining habitat connectivity.  Wildlife passages include overpasses and 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Executive Summary 

Western Transportation Institute  Page xv 

underpasses, with underpasses consisting of bridges or culverts.  The literature documents that 
different species of wildlife prefer different characteristics that may be incorporated into passage 
structure designs.  If the goal of a wildlife mitigation effort was to provide passage for a 
community of species, several different types of passage designs would likely be required, 
depending on the suites of species that were to be accommodated.  In addition, for wildlife 
mitigation passages to be most effective, a physical road barrier and funneling system (i.e. 
wildlife exclusion fencing) should be incorporated into the overall design. 

The literature review found that while evaluation of wildlife passage systems is necessary for 
assessing effectiveness, monitoring is often not performed.  The review outlined sequential steps 
for conducting a comprehensive field evaluation, and identified successful methods, such as 
collision data, tracking beds, video monitoring, radio monitoring of animal movements, DNA 
assignment testing, and fecal stress measures.  The literature review confirmed the importance of 
collecting and analyzing data from both before and after installation of wildlife mitigation 
measures.   

Project History and Case Study 
Researchers documented the US 93 reconstruction efforts as a case study to highlight the history 
of the project and its challenges, as well as the different points of view and approaches that 
shaped the planning and design process.  The project dates back to the early 1980s, when the 
Montana Department of Transportation (MDT), the Confederated Salish Kootenai Tribes (CSKT 
or “the Tribes”) and the Federal Highway Administration (FHWA) recognized the need to 
increase the level of service and safety for US 93 on the Reservation.  Since that time, many 
challenges were overcome as stakeholders worked together to understand, respect and trust each 
other through the planning and design process. 

Stakeholders adopted a context-sensitive design approach that considered the landscape, people, 
and cultural values in addition to safety and level of service.  Central to the approach was the 
concept that “The road is a visitor”:  not only should the highway be safe and accommodate 
increasing traffic volumes, but US 93 should also respect and reflect the landscape and natural 
and cultural values of the Tribes.  The design concepts agreed upon by the three governments 
were compiled in a range of documents that were eventually adopted as the US 93 
Reconstruction MOA (Skillings Connolly 2000). This document included: 

• An overarching Design and Alignment Concepts;  

• Design Guidelines and Recommendations;  

• Design Components Workbook; and    

• Wildlife Crossings Workbook. 

A Technical Design Committee (TDC) was formed of members from the three governments to 
ensure that the design development process proceeded in accordance with the MOA.  This TDC 
worked closely and regularly to steer the project and resolve any disparities by working to 
achieve consensus and come to reasonable solutions that all three parties could agree upon.  The 
TDC guided the design details for the installation of the 42 fish and wildlife crossing structures 
and approximately 15 miles (24 km) of wildlife exclusion fencing. 
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Preconstruction Field Study 
The primary goals of the field evaluation are to determine what effect US 93 wildlife crossing 
structures and wildlife exclusion fencing have on: 1) the frequency of AVCs; and 2) habitat 
connectivity, specifically in terms of successful wildlife movements across US 93.  A “before-
after” approach has been adopted and study efforts concentrate on deer species (white-tailed deer 
[Odocoileus virginianus] and mule deer [Odocoileus hemionus]) and black bear (Ursus 
americanus).   

The first goal of the evaluation will be assessed for the entire 56-miles of US 93 from Evaro to 
Polson to compare AVCs before and after installation of the mitigation measures.  The second 
goal will be accomplished by assessing wildlife movements across US 93 before and after the 
installation of the wildlife fencing and crossings.  Preconstruction wildlife-highway crossing data 
collection efforts were focused between Evaro and St. Ignatius, a subsection of the larger study 
area, with the intention of comparing these data to post-construction data in the same areas.  The 
Evaro, Ravalli Curves and Ravalli Hill areas were the focal study area selected for more 
intensive wildlife-highway crossing sampling efforts because these areas are slated for the 
longest continuous stretches of wildlife exclusion fencing with crossing structures.   

Researchers used several methods to evaluate deer and black bear behavioral and population 
ecology in the US 93 highway corridor prior to reconstruction.  The documentation of quantity 
and location of AVCs were analyzed to understand how these data interacted with traffic activity 
patterns and volume, as well as to quantify statistical limitations with the dataset.  Sand track 
beds were used to sub-sample wildlife movements within the road verge, which provided an 
estimated total preconstruction crossing rate within the areas that will have the most extensive 
wildlife fencing.  While both the AVC and track bed data provided an index of wildlife 
population density and road-centric behavior patterns, pellet group data independently indexed 
local deer population density.  Photographic monitoring at an existing bridge indicated what 
species of animals were using the area and daily patterns of activity in deer and bear moving 
under the highway.   

Used separately, these metrics addressed specific questions regarding preconstruction deer and 
black bear movements and vehicle-related mortalities within the US 93 corridor.  Used together, 
these indices integrate demographical and behavioral information to better understand trends 
observed in the parameters of interest as well as what factors may be driving observed trends.  
This information will be critical in determining the effects of mitigation measures on deer and 
bear in post-construction years.  Preconstruction field study results for the focal species and 
parameters of interest (deer- and black bear-vehicle collisions and cross-highway movements) 
are summarized below: 

• Deer-vehicle collisions 

o The average annual number of reported deer-vehicle collisions (DVCs) for US 93 
from Evaro to Polson during the 2002—2005 preconstruction years was 90 (95% 
confidence interval [C.I.] = 82, 98).  Based on these preconstruction data, it was 
determined that a 35% decline in DVCs will be detectable after 3 years of post-
construction study, and a 22% decline after 5 years of study.   

o The average annual number of DVCs reported in 2002—2005 for the 8.7 miles 
(14 km) of US 93 where wildlife fencing is proposed was 11.8 (95% C.I. = 4.6, 
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18.9).  This equates to 1.4 deer killed per mile per year (95% C.I. = 0.5, 2.2).  
These data had high year-to-year variance and only large changes will be 
statistically detectable in the areas to be fenced; e.g., a 241% change in kills per 
mile will be detectable after 3 years of post-construction monitoring, while a 
151% change will be detectable after 5 years. 

o The annual average number of DVCs for the 44.9 miles (72.3 km) of US 93 that 
will not have wildlife fencing (including the Ninepipes section where 
reconstruction design plans have not yet been determined) was 78.3 (95% C.I. = 
74.5, 82.0).  This equates to 1.7 deer killed per mile per year (95% C.I. = 1.7, 1.8).  
With significantly more miles of road where no wildlife fencing will be installed, 
there was less variance in the annual reported DVCs outside the area that will 
have wildlife fencing such that smaller differences may be detectable in post-
construction study.  Outside the area that will be fenced, a 19% increase or 
decline in deer kills per mile would be detectable after 3 years of post-
construction study, while a 12% increase or decline would be detectable after 5 
years.   

o There were several areas where numbers of DVCs were three standard deviations 
above the 2002-2005 mean number of DVCs.  Two such hotspots were identified 
at mile markers 33.6 and 34.5; both within 0.1 mile from where wildlife crossing 
structures will be installed, but the wildlife fencing extending from those 
structures will not cover those specific locations.  An unmitigated hotspot 
occurred at mile marker 7.4, and several other hotspots (mile markers 37.5, 37.7-
37.9, 39.8, and 45.6-45.8) occurred within the final section of US 93 within the 
Ninepipes National Wildlife Refuge on the Reservation which is planned for 
reconstruction upon the completion of a Supplemental Environmental Impact 
Statement 

• Bear-vehicle collisions 

o The mean number of black bears killed by vehicles from 1995—2005 on US 93 
between Evaro and Polson per year was 2.91 (95% C.I. = 1.15, 4.67).  This figure 
includes data from 2002 and 2003, when 8 and 9 black bear mortalities due to 
collisions with vehicles were reported for each of these years, respectively; these 
higher numbers of reports were likely a result of more intensive monitoring for a 
research study assessing black bear responses to US 93 prior to reconstruction.  
With small sample sizes, there is little statistical power to detect changes in pre- 
and post-construction bear-vehicle collisions; this result underscores the 
importance of repeating the black bear study post-construction in order to obtain 
more detailed data that will provide a better understanding of the effect of the 
mitigation on this focal species. 

• Cross-highway movements 

o Sand track beds placed parallel to US 93 were used to sample wildlife movements 
across approximately 30% of three stretches of US 93 that will have extensive 
lengths of wildlife fencing and crossing structures.  Across 4027 m (2.5 miles) of 
track beds monitored from June through October in the focal study areas over 
three years (2003—2005), deer species were the most frequently observed tracks, 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Executive Summary 

Western Transportation Institute  Page xviii 

with medium mammals (including skunks, raccoons, and rabbits/hares) and 
canines (including domestic dogs and coyotes) as the second- and third-most 
observed species.   

o Deer and black bear track observations classified as “crossings” were used to 
extrapolate and estimate total crossing activity that occurred along stretches of US 
93 planned for extensive fencing.  These stretches of highway include 
approximately 3.2 km (1.9 miles) in Evaro, 5.9 km (3.6 miles) in Ravalli Curves, 
and 2.1 km (1.3 miles) in Ravalli Hill, for a total of 11.2 km (6.9 miles) to be 
fenced to exclude wildlife and funnel them toward the crossing structures.  An 
estimated total of 5,196 deer crossed US 93 in these areas over the June-October 
tracking monitoring seasons in 2003-2005, and while an estimated total of 327 
black bear crossings over the same area and same time period.   

Other US 93 Road Ecology Preconstruction Research 
Researchers reviewed other recent preconstruction research efforts related to various aspects of 
the reconstruction’s effects on black bear, deer, aquatic organism passage, and turtles.  Each of 
these studies provides an opportunity to repeat the research after mitigation is installed to 
comparatively assess the effects of the reconstruction and mitigation measures. The studies 
reviewed are described below: 

• WTI collaborated with University of Montana to conduct field research focused on black 
bear density, behavior, population demography, gene flow, and mortality relative to US 
93 prior to the reconstruction. Wildlife biology graduate student Karin McCoy’s thesis 
research concluded that US 93 may be a barrier to some segments of the black bear 
population in the study area, but it is not currently a barrier to overall gene flow.  Planned 
locations of wildlife mitigation passages appear to be aligned with current black bear 
movements across the highway. 

• WTI civil engineering graduate student Darren Baune conducted preconstruction baseline 
fish passage assessment of several stream crossings planned for replacement.  Overall, 
the passability assessment of the study culverts indicates that each culvert is likely 
functioning as a fish passage barrier during at least a portion of the year (i.e., each culvert 
was categorized as a partial barrier). 

• WTI and the Wildlife Conservation Society (WCS) collaborated to support graduate 
student Whisper Camel to study site-specific variables that influenced the occurrence of 
preconstruction deer-vehicle collisions (DVCs) and deer-highway crossing rates on US 
93.  Using GIS and other tools, she developed models to help predict DVCs at deer 
highway crossing locations.  Final results are expected early 2007. 

• MDT, with additional support from CSKT; the Montana Cooperative Wildlife Research 
Unit; Montana Fish, Wildlife and Parks; University of Montana; the Salish Kootenai 
College, and WTI, funded PhD candidate Kathy Griffin to do a three year field study 
assessing the highway’s effects on connectivity, mortality and population parameters for 
the Ninepipes western painted turtle population prior to the reconstruction of the US 93.  
Major findings from the draft final report indicate the highway affects the turtle 
population via direct mortality and reduced connectivity.  Considering turtle populations’ 
slow growth and reproductive rates, the conservative estimate of 6-17% of the turtle 
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population killed on the highway along with additive mortality due to sensitivity to 
drought conditions could not be sustained if the population were closed (i.e., no 
emigration or immigration from other populations).  However it was evident that 
temporary and permanent emigration occurs from surrounding reservoirs, underscoring 
the importance of maintaining landscape connectivity for this species. Given that the 
Ninepipe/Ronan section of US 93 has not gone through the detailed design phase for 
reconstruction, specific recommendations for consideration in the design process were 
made. 

Measures of Effectiveness and Post-Construction Monitoring Recommendations 
WTI developed complementary post-construction monitoring methods for a “before-after” 
assessment of the effects of the mitigation and suggested quantitative and qualitative “measures 
of effectiveness” (MOEs) for the main parameters of interest in this evaluation study:  animal-
vehicle collisions (AVCs) and wildlife-highway crossings.  Considerations for MOEs included 
the following:   

• Recognizing the differences in effect versus effectiveness and that different entities will 
apply different qualitative and quantitative values to determine whether the mitigation is 
considered “effective” or not based on their viewpoints; 

• Setting a minimum threshold for the MOE related to decreasing deer vehicle collisions 
(DVCs) at the smallest statistically detectable reduction (35% or greater) determined 
based on the preconstruction DVC data; 

• If the minimum MOE for reducing DVCs by 35% is maintained over 25 years, the 
estimated costs of the mitigation investments would be repaid in terms reduced property 
damage, human injuries and fatalities, carcass removal costs, and loss of deer as a 
resource;  

• Setting a minimum MOE for no change or any increase in deer-highway crossings 
compared to the conservative estimate of total crossings in the areas where the most 
extensive wildlife crossings are to be installed; and  

• Setting an MOE for black bear-highway crossings for at least 10 different individual 
bears, including at least one female black bear, successfully crossing US 93 annually 
after the road after mitigation is installed.   

Post-construction monitoring recommendations included the following: 

• Monitoring post-construction wildlife movements through the wildlife crossing 
structures, at gaps in the wildlife fencing, and at the wildlife exclusion fence ends through 
the use of sand tracking beds and remote-trigger IR photo cameras to analyze wildlife 
movements and habitat connectivity after wildlife fencing is installed, and to compare 
these data with the preconstruction estimates of deer and bear crossings; 

• Using photo monitoring to quantify the accuracy of track beds in reflecting crossing 
rates; 

• Continuing annual pellet transect monitoring to monitor deer populations; 

• Monitoring traffic to analyze impact on wildlife-vehicle collisions and crossing behavior;  
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• Repeating the black bear highway corridor study, fish passage monitoring at newly 
designed culverts, the western painted turtle study to assess habitat connectivity and road-
related mortality after the Ninepipes reconstruction is completed, and the DVC study to 
comparatively assess the effect of the mitigation measures on DVCs; and  

• Maximizing the numbers of years of monitoring to provide better ascertain or reduce the 
amount of variability in the data while also considering when to initiate post-construction 
monitoring given the “learning curve” that may be apparent initially after reconstruction 
is complete.   

Conclusions 
The US 93 planning and construction represents the culmination of successful and coordinated 
actions by many involved agencies and interest groups.  The case study also is unique in its 
potential to be one of the most comprehensive and valuable data sets regarding mitigation effects 
that has yet been collected.  It has the potential to provide information about wildlife crossing 
structures and mitigation measures to engineers, highway departments, and wildlife ecologists 
that will be useful in guiding future construction projects and creating effective and 
parsimonious research programs worldwide.   

However, all these perceived benefits hinge on rigorous and committed post-construction 
research.  Perhaps one of the most important insights gained from the preconstruction research is 
that, due to the myriad sources of unquantifiable variation in the environment, several years are 
required to estimate how much variation can be expected.  In turn, several years of post-
construction research must be employed to yield useful, applied results, lessons learned, and best 
management practices that can be applied on other wildlife mitigation efforts in the future. 
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2. INTRODUCTION 

Highways have direct and indirect ecological effects on wildlife.  Animal mortality due to 
collisions with vehicles is also a concern for motorist safety.  Indirectly, highways and high 
traffic volumes bisect wildlife habitat which can impair or prevent wildlife movements to meet 
daily or seasonal requirements for food, water, secure cover, dispersal of young and 
reproduction.  Animal-vehicle collisions (AVCs) and habitat fragmentation issues deserve 
consideration in highway infrastructure improvement projects (Evink 2002) for long-term 
sustainability of wildlife populations and to address the safety issues that wildlife-vehicle 
interactions may create.  

Numerous measures have been applied to mitigate the impacts of highway-wildlife interactions 
with varying degrees of success (Hedlund et al. 2004, Knapp et al. 2004, Forman et al. 2003, 
Farrell et al. 2002), but there is a need for more conclusive information about the effectiveness of 
these methods (Clevenger 2001).  Long-term monitoring and research is required to better 
understand how mitigation deployments affect animal-vehicle collisions and wildlife movements 
across roads.  Evaluation of such deployments will help guide transportation agencies in future 
mitigation efforts for the benefit of wildlife and motorists. 

The reconstruction of US Highway 93 (US 93) on the Flathead Indian Reservation in 
northwestern Montana provides an opportunity to evaluate how wildlife crossing structures and 
wildlife fencing affect animal-vehicle collisions and wildlife movements in a multiple-use rural 
landscape.  The Confederated Salish and Kootenai Tribes (CSKT), the Federal Highway 
Administration (FHWA), and the Montana Department of Transportation (MDT) signed a 
Memorandum of Agreement (MOA; Skillings Connolly 2000) for the reconstruction of 46 miles 
(74 km) of US 93 from Evaro to Polson.  The reconstruction will include installations of 42 fish 
and wildlife crossing structures and approximately 15 miles (24 km) of wildlife exclusion 
fencing for a total investment of over $9 million (Skillings Connolly 2000), an unprecedented 
level of wildlife mitigation effort on a single reconstruction project in North America.   

Additionally, the MOA commits to monitoring and evaluating animal-vehicle collision incidents 
and wildlife movements across the highway before and after the mitigation measures are 
installed.  Specifically, the objectives of this evaluation study are to:   

• Determine what effect US 93 wildlife crossing structures and fencing have on the 
frequency of animal-vehicle collisions and successful animal highway crossings; 

• Document the design decision-making processes and lessons learned as a “case study”; 
and 

• Identify best management practices and further research. 

Funded by FHWA and MDT, the Western Transportation Institute at Montana State University-
Bozeman (WTI) was contracted to oversee preconstruction baseline field data collection and to 
document a “case study” highlighting significant events and decision-making processes that 
shaped the planning and design of the mitigation measures.  This report summarizes the 
preconstruction field study efforts and the history of the design process.   

Several components are covered in this preconstruction report.  Chapter  3 provides a review of 
literature on locating and designing wildlife crossing structures and exclusion fencing and 
addresses methods and considerations for the evaluation of their effectiveness.  Chapter  4 
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outlines the history of US 93 reconstruction efforts as a case study, illustrating the challenges and 
successes encountered over years of envisioning and negotiating desired outcomes for the 
highway.  A significant portion of this report, Chapter  5, pertains to the preconstruction data 
collection and field studies carried out by WTI.  Chapter  6 summarizes complementary 
ecological research conducted on US 93 during the preconstruction phase.  Chapter  7 provides 
recommendations for the post-construction monitoring plan including proposed measures of 
effectiveness, and Chapter  8 summarizes highlights and draws conclusions from the 
preconstruction monitoring efforts.   

The information gathered during the preconstruction phase of the US 93 project provides useful 
information for transportation and natural resource managers regarding the planning, design, and 
evaluation of wildlife mitigation deployments.  However, it is the comparison of preconstruction 
and post-construction data that will ultimately yield the most valuable results regarding the 
performance of wildlife crossing structures and exclusion fencing.  Along with lessons learned 
from the case study, the pre- and post-construction field monitoring and evaluation study will 
direct the development of “best management practices” to guide future wildlife mitigation 
deployments.   

 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Literature Review 

Western Transportation Institute  Page 3 

3. LITERATURE REVIEW 

Many authors have documented the effects of roads and vehicles on wildlife (Forman and 
Alexander 1998, Reijnen and Foppen 1994, Bashore et al. 1985) and several compilations and 
syntheses of literature related to roads and wildlife exist (Evink 2002, Forman et al. 2003, Irby 
and Podruzny 2001, Singleton 1998).  This literature review does not attempt to exhaustively 
examine all available information on this topic; rather, this review focuses on published papers, 
peer-reviewed journal articles and reports regarding locating, designing and evaluating the 
effectiveness of wildlife crossing structures and exclusion fencing.   

In addition to the literature reviewed in this chapter, Chapter  5 summarizes literature related to 
the field methods used in the preconstruction study.   Considerations for the collection and use of 
animal-vehicle collision data, track bed methods to document animal presence and movements, 
and pellet transects as an index of population density are specifically addressed and supported 
with examples in Chapter 5.   

3.1. Overview  
Animal-vehicle collisions (AVCs) are considered a safety and environmental issue in the United 
States (US) and around the world.  Estimates of 750,000 to 1.5 million automobile collisions 
with deer (Odocoileus sp.) alone occur on US roads each year (Romin and Bissonette 1996, 
Conover et al. 1995).  The annual impact is more than 200 human fatalities, 29,000 injuries and 
one billion dollars in vehicle damage (Conover 1997 and Conover et al. 1995).  Road-killed 
animals are also an obvious result of AVCs, but the exact magnitude road-related animal 
mortality is unknown because of inadequate record keeping (Knapp et al. 2004, Barnum 2003, 
Evink 2002).  Roadways intersecting wildlife habitats may act as barriers to dispersal and 
movement, disrupt migratory routes, limit genetic exchange (Riley et al. 2006, Strasburg 2006, 
Mills and Conrey 2003, Sunquist and Sunquist 2001, Smith 1999) and impose a range of 
potential impacts on wildlife habitat (Forman et al. 2003, Evink 2002).  As existing roads are 
reconstructed or expanded and as new roads are being built to accommodate increasing 
development, the challenge is to minimize the negative and unintended effects to humans, 
wildlife and ecological systems. 

There have been many attempts to reduce AVCs, resulting in varying degrees of success.  A 
number of overviews summarize AVC mitigation measures and corresponding evidence of their 
effectiveness, or lack thereof (Hedlund et al. 2004, Knapp et al. 2004, Forman et al. 2003, Farrell 
et al. 2002).  Attempted mitigation measures have included techniques and devices to modify 
animal behavior (e.g., roadside-reflectors, vehicle-mounted whistles, repellents, intercept 
feeding, and wildlife fencing combined with passages under or over roads) and driver behavior 
(e.g., educational outreach and public relation campaigns, speed limits and enforcement, 
increasing driver visibility, and warning signs).  The most promising measure for reducing AVCs 
is to physically limit animals from accessing the roadway with exclusion fencing coupled with 
wildlife crossing structures which allow animals to pass under or over roadways thereby 
avoiding passing vehicles (D’Angelo et al. 2005, Knapp 2005, Clevenger et al. 2002b, Evink 
2002).  Wildlife exclusion fencing used in combination with crossing structures has been shown 
to reduce AVCs by 80-96% (Clevenger et al. 2001, Lavsund and Sandegren 1991, Ward 1982). 
Ultimately, if animals are to use a wildlife crossing structure, its location and design features 
must be preferable to crossing the road itself.   
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3.2. Locating Wildlife Passages 
Wildlife do not cross roads randomly (Barnum 2003; Clevenger et al. 2002b), a factor that must 
be considered when determining where to place wildlife passages.  Animals move to within and 
between preferred habitats on daily, seasonal, and annual forays as they reproduce, seek shelter, 
forage, migrate, and disperse (Cramer and Bissonette 2005, Anderson and Gutzwiller 1996).  
Placing structures at natural crossing points where wildlife prefer to travel will increase the 
likelihood that animals will find them and use them (Foster and Humphrey 1995).  Generalized 
landscape features found to be most consistently important to the use of passages are the 
presence of suitable habitat on both sides of the road (Barnum 2003, Gloyne and Clevenger 
2001, Veenbaas and Brandjes 1999), the placement of crossing structures at naturally-occurring 
travel routes and trails (Grist et al 1999, Land and Lotz 1996, Foster and Humphrey 1995), and 
low levels of human activity (Clevenger and Waltho 2000, Rodriquez et al. 1997).  Locating 
passages in relatively remote or less traveled areas can help reduce the effect of human activity 
(Iuell et al. 2003). 

Beyond generalities, several methods may be used to determine optimal locations for wildlife 
crossing structures.  These methods utilize road-kill and AVC data (Grist et al. 1999), 
Geographic Information System-based landscape analysis (Ruediger et al. 2004, Craighead et al. 
2001, Mietz 1994), expert opinion (Clevenger et al. 2002a), and site- and species-specific field 
studies (Scheick and Jones 1999, Foster and Humphrey 1995).  Ideally, one would use a 
combination of these approaches in order to “cross check” their outcomes (Clevenger et al. 
2002a).     

Road kill and AVC data can offer insights for placement of crossing structures if they are 
spatially accurate and collection methodology is consistent.  Typically, however, only a fraction 
of road kill is reported (Slater 2002, Romin and Bissonette 1996). A study comparing observed 
road-killed deer and reported AVCs for a particular roadway segment estimated that only 20 
percent of AVCs were reported (Messmer et al. 2000). In addition, the lack of reporting 
standards (Knapp et al. 2004), inadequate spatial precision (Barnum 2003), and opportunistic 
reporting (rather than systematic monitoring) reduces the usefulness of such data.  Relying solely 
on road-kill data is not advised since it likely under-represents actual numbers (Sielecki 2004, 
Sullivan and Messmer 2003, Slater 2002).  Road kill and AVC rates are useful in determining the 
general area for mitigation efforts but further analysis is required to determine specific optimal 
placement (Barnum 2003, Clevenger et al. 2002b).   

Geographic Information Systems (GIS) is a computer mapping tool that acts allows for the 
assessment of spatially-related attributes and has been applied to identify potential highway 
mitigations sites for wildlife (Kautz et al. 1999, Klein 1999, Singleton and Lehmkuhl 1999).  
Experienced analysts can readily find or create coarse-scale digital spatial data layers.  Public 
sources of data are often available from state and federal programs (Evink 2002), such as 
Montana’s National Resource Information System (NRIS 2005) and the US Census Bureau 
which offers trademarked TIGER (Topologically Integrated Geographic Encoding and 
Referencing) files.  Some examples of spatial data that may be useful, but not necessarily 
required, to determining optimal locations for mitigation applications include: 
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• Land cover or habitat types; 

• Individual locations or clusters of AVCs; 

• Human activity level and building density; 

• Locations of potential barriers such as guard rails and median barriers on roads; 

• Wildlife home range and movement patterns;  

• Linear features of the landscape which may guide wildlife movement; 

• Natural wildlife passage sites and locations of wildlife trails; and 

• Topography, including slope and complexity of the intended approach to a potential 
crossing structure location. 

Analysts overlay layers of spatial data to relate landscape features to one another, yielding 
secondary outputs that can be quantitatively and qualitatively analyzed to represent empirical or 
theoretical relationships.  In some cases, the analyst may model these relationships; however, 
such outputs should be validated through field tests (Johnson and Gillingham 2004, Koeln et al. 
1996). The key is to select the most informative data layers, and parameters, and to understand 
relationships between animal behavior and the landscape, depending on the target species or 
suites of species and objectives of the project.   

Expert opinion may be more accessible and assessable than physical data which may take years 
to collect and analyze, or spatial models that require time to be validated in the field.  Expert 
opinion can be based on firsthand knowledge of local wildlife populations and landscape 
attributes or on the insights gained from synthesizing relevant literature.  In one study, expert 
opinion predicting wildlife crossing locations closely approximated an empirical model based on 
telemetry information (Clevenger et al. 2002a).   

After a general area for a wildlife passage is identified via a method or combination of methods 
described above, more intensive fine-scale analysis will help determine a precise optimal 
location (Clevenger et al. 2002b, Kautz et al. 1999, Klein 1999).  Fine-scale analyses include the 
ground truthing coarse-scale spatial data and site-specific, and possibly species-specific, field 
studies (e.g., radio-collar studies of animal movements, track bed monitoring, pellet counts, 
photo monitoring, traffic monitoring).  Each species has specific requirements to consider when 
locating crossing structures for optimal use (Clevenger and Waltho 2005, Clevenger et al. 2002a, 
Grist et al. 1999, Foster and Humphrey 1995).  Multiple structures in a variety of locations with 
varying design features may be necessary to meet the requirements of all affected wildlife 
species in a particular region.   

No single technique has been deemed ideal for selecting locations for wildlife passages.  Further 
considerations must also be taken into account to maximize wildlife use of these mitigation 
measures; for example, design of passages and use of wildlife exclusion fencing to guide animals 
to these passages will affect wildlife use of a passage, in addition to the location of the passage. 
An interdisciplinary approach to selecting types of crossings and locations of wildlife passages is 
useful and practical, as it combines multiple factors such as ecology, engineering, cost, 
constructability, and social concerns. 
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3.3. Designing Wildlife Passages 
Some studies indicate that passage design may be more important in determining wildlife use 
than location (Clevenger and Waltho 2005), while others show the opposite (Land and Lotz 
1996, Foster and Humphrey 1995).  No single passage design has been shown to be appropriate 
for all wildlife species.  Factors that may influence whether an animal use of crossing structures 
include dimensions of the structure, presence or absence of cover (Clevenger and Waltho 2000), 
substrate type (Iuell et al. 2003, Clevenger and Waltho 2000, Jackson and Griffin 2000), light, 
moisture, temperature, noise, fencing, approaches and the potential for species interactions 
(Jackson and Griffin 2000, Iuell et al. 2003).  Species-specific preferences and requirements 
must be considered when designing wildlife passages (Mata et al. 2005, Clevenger et al. 2002b).   

A variety of passage designs may be necessary to meet the needs of multiple species (Clevenger 
and Waltho 2005, Mata et al. 2005, Barnum 2003, Iuell et al. 2003).  One study of monitoring six 
passage types (circular culverts, adapted box culverts, open span bridges, wildlife underpasses, 
wildlife overpasses and overpasses designed for human use) revealed that different fauna prefer 
different crossing types (Mata et al. 2005).  Many adaptable species will use more than one type 
of crossing structure while others have more limited tolerance for artificial passages.   

Wildlife mitigation passage designs fall into two general categories: overpasses and underpasses, 
structural installations that direct animals to cross over or under the roadway and traffic.   
Wildlife overpasses, also known as “ecoducts” or landscape connectors, are built over a road 
(similar to a bridge) and vegetated to provide habitats attractive to wildlife (Iuell et al. 2003, 
Evink 2002, Jackson and Griffin 2000); overpasses may also be created when a roadway tunnels 
through substrate (Wildlife Crossings Toolkit 2005).  Overpasses are generally quieter than 
underpasses and can offer a more natural and inviting setting (Iuell et al. 2003, Jackson and 
Griffin 2000).  Animals are more likely to use overpasses if the habitat on the opposite side of 
the road is clearly visible, that is, without a hill that can limit viewing (Clevenger et al. 2002b).  
Overpasses generally range from 3.4m (3.7 yd) to 870m (0.5 mile) wide at the ends (Evink 
2002).  Most European overpass designs are 90m (98 yd) wide at the ends reducing to 70m (76.5 
yd) at the middle of the structure (Clevenger et al. 2002b, Wieren and Worm 2001, Jackson and 
Griffin 2000).   

A wildlife underpass may consist of a bridge or a culvert.  Span bridges, viaducts and causeways 
across natural features such as rivers or ravines separate traffic from seamless habitat under the 
roadway, providing an ideal passageway for wildlife.  A culvert is a pipe-like structure typically 
designed and installed to provide water drainage; however, with some thoughtful adaptations, a 
culvert may also serve as a wildlife passageway.  Culverts are often made of corrugated metal or 
concrete and may have cool, wet conditions (Servheen et al. 2003).  Such conditions may be 
desirable to some animals such as water-dependent amphibians and reptiles, while other animals 
may be more apt to use a culvert if a dry path, such as a raised bench, is provided through the 
length of the passage and if there is sufficient vegetation cover inside (if light conditions allow) 
and at the entrances (Mata et al. 2005, Foresman 2004, McDonald and St. Clair 2004, Barnum 
2003, Servheen et al. 2003, Rodriquez et al. 1997).   

The size of a crossing structure has a direct relationship to the size of the animals that use it 
(Clevenger and Waltho 2005, Donaldson 2005, Iuell et al. 2003).  Smaller species tend to choose 
smaller passages while larger species prefer larger passages (Mata et al. 2005 and 2003).  
Passage width dictates whether or not wildlife will use a crossing structure (Clevenger and 
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Waltho 2005, Ng et al. 2004, Gordon and Anderson 2003, Iuell et al. 2003, Veenbaas and 
Brandjes 1999).  Structural openness is equal to the product of opening width and opening height 
divided by the length of the crossing (width x height/length) (Gordon and Anderson 2003, 
Servheen et al. 2003).  Structures with wide, open passages at least 2.1 m (2.2 yd) high with 
natural bottoms and a clear view of the habitat on the other side are more likely to be used by 
deer and other ungulates (Clevenger and Waltho 2005, Gagnon et al. 2005, Barnum 2003, 
Servheen et al. 2003, Foster and Humphrey 1995).  Other recommended minimum dimensions 
for underpasses accommodating deer vary from 3m (3.2 yd) in width and 3.7m (4.0 yd) in height 
(Donaldson 2005) to 15m (16.4 yd) in width and 3-4m (3.2 – 4.2 yd) in height (Iuell et al. 2003).  
It should be noted, however, that behavioral differences in deer species (Odocoileus sp.) affects 
the species’ tendency to adapt to using crossing structures; e.g., white-tailed deer (Odocoileus 
virginianus) appear to adapt to and use crossing structures more readily than mule deer 
(Odocoileus hemoinus) (Gagnon et al. 2005), although size of the structure may not be the only 
factor affecting mule deer hesitancy to adapt to using such crossings.  Dimensions have a greater 
impact when the structure is new and animals have not yet adapted to regular use of the structure 
(Forman et al. 2003, Clevenger and Waltho 2000).   

Culverts with narrow openings are heavily used by many small carnivores and other small 
mammals, amphibians and reptiles that prefer them to more open underpasses (Mata et al. 2005, 
Foresman 2004, Clevenger and Waltho 1999).  Some species, especially large-bodied ones, may 
find some passages too low or confining without a sufficient view of the habitat on the other side 
(Donaldson 2005).  Smaller species and some carnivores may prefer passages with cover on the 
approach (Donaldson 2005, Iuell et al. 2003, Evink 2002); some may avoid tunnels if there is 
insufficient cover throughout (Foresman 2004, Iuell et al. 2003, Evink 2002). Clevenger and 
Waltho (2005) found that distance to cover was significantly positively correlated to passage use 
for grizzly bears (Ursus arctos horribilis), elk (Cervus elaphus) and deer (Odocoileus sp.), while 
the correlation was negative for cougars (Felis concolor).  Prey species may be discouraged from 
using a passage if predators also use it, although this is an understudied phenomenon (Little et al. 
2002). 

Moisture levels are important to consider when planning for moisture-dependent species, and a 
dry path can encourage use by less moisture-dependent wildlife species (Foresman 2004, Iuell et 
al. 2003, Evink 2002, Jackson 1999).  Noise from traffic or other sources can deter some 
sensitive species from using a crossing structure (Clevenger and Waltho 2005, Evink 2002).   

Singly or in combination, spatial and environmental variables influence wildlife use of crossing 
structures.  Table 1 lists some of the known preferences and avoidances for select species found 
in Montana.  Given the variety of preferences that have been documented, if the goal of a 
wildlife mitigation effort was to provide passage for a community of species, several different 
types of passage designs would likely be required, depending on the suites of species that were to 
be accommodated.   
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3.4. Wildlife Exclusion Fencing 
To maximize wildlife mitigation passage effectiveness, a physical road barrier and funneling 
system should be incorporated into the overall design (Clevenger et al. 2002b, Iuell et al. 2003). 
Wildlife exclusion fencing prevents animals from accessing the road while channeling them 
toward crossing structures.  Continuous exclusion fencing, in combination with wildlife crossing 
structures, has been shown to reduce ungulate-vehicle collisions by 96% on controlled access 
highways (Clevenger et al. 2001, Woods 1990).  In some cases, fencing has been necessary for 
particular species to use a crossing structure.  Cougars will not use culverts and ungulates will 
not use underpasses unless other access is barred (Jackson and Griffin 2000).   

Exclusion fencing must be designed to prevent animals from crawling under, climbing over or 
pushing through to the road surface.  Fence height and design must be fitted to the abilities and 
tendencies of the target species.  Fences at least 7.2 feet (2.2m) (Iuell et al. 2003) or 7.9 feet 
(2.4m) (D’Angelo et al. 2005, Wildlife Crossings Toolkit 2005, Ward 1982) tall will prevent 
deer from jumping over. Bears and cougars can climb fences but may be prevented from 
climbing if a 90º lip, or outrigger, is installed at the top of the fencing (Clevenger et al. 2001).  
Further, these animals climb wooden posts and metal posts may reduce these undesirable 
behaviors (Clevenger, pers. comm.).  Burying the bottom of the fence a few inches or at least 

Table 1: Summary of literature assessing northern Rocky Mountain wildlife preferences and features to 
avoid for designing wildlife crossing structures.   

Amphibians  

Prefer: Moist conditions (Iuell et al. 2003, Jackson 1996); culverts to open underpasses (Mata et al. 2005, 
Foresman 2004, Clevenger and Waltho 1999).   

Avoid: Dry passages, sudden changes in temperature between the passage and the outside air (Iuell et 
al. 2003; Jackson 1996).  

Black bear (Ursus americanus) 

No clear preference for overpasses or underpasses (Clevenger et al. 2002b). 

Cougar (Felis concolor) 

Prefer: Underpasses far from human activity with sufficient cover leading to the passage (Clevenger et al. 
2002b, Gloyne and Clevenger 2001, Rodriquez et al. 1997). 

Avoid: Artificial light might discourage use by mountain lions (Cramer and Bissonette 2005, Jackson 
1999, Beier 1995). 

Deer (Odocoileus sp.) and Elk (Cervus elaphus) 

Prefer: Overpasses but will also use underpasses (Clevenger et al. 2002b).  White-tailed deer 
(Odocoileus virginianus) learn to use underpasses more readily than mule deer (Odocoileus hemoinus) 
(Gagnon et al. 2005). 

Grizzly bear (Ursus arctos horribilis) 

Prefer: Overpasses to underpasses and culverts (Clevenger et al. 2002b). 

Wolf (Canis lupus) 

Prefer: Overpasses to underpasses and culverts (Clevenger et al. 2002b). 
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ensuring the bottom is absolutely flush with the ground can keep animals from crawling under 
fences (Clevenger et al. 2001, Boarman and Sazaki 1996, Woods 1990, Feldhamer et al. 1986, 
Falk et al. 1978).  Fine mesh along the bottom section of fencing can keep smaller animals from 
crawling through the fence and may prevent bears from climbing the fence.  Low concrete walls 
with a lip or small mesh hardware cloth are effective for preventing access by amphibians and 
reptiles (Griffin and Pletscher 2006, Griffin 2005, Pletscher and Griffin 2003, Iuell et al. 2003, 
Evink 2002).  

No fence is 100% impermeable; some animals will gain access to the highway right-of-way 
(D’Angelo et al. 2005).  If bears and cougars breach a fence by climbing, they can also exit the 
same way. Ungulates, however, require exit safety features. One-way gates, ramps, and hazing 
animals through swing gates have all been shown to be effective to some degree (Bissonette and 
Hammer 2000).  One-way gates allow animals to safely exit the roadway, but some animals are 
reluctant to use them.  If gates are not properly lubricated or maintained, they could become 
stuck in the open position, allowing animals to pass in both directions (Woods 1990, Waters 
1988, Ludwig and Bremicker 1983).  In Banff National Park, however, cow elk learned how to 
open these gates to access forage on the right of way; these gates have since been fenced over 
and large swing gates were installed for ungulates to exit through, with the help of personnel to 
haze the animal toward the open gates (Clevenger, pers. comm.).  Hazing ungulates through 
swing gates is effective but time-consuming and labor-intensive (Woods 1990).  Earthen return, 
escape, or jump-out ramps are sloped surfaces that lead up to the top of the fence from the 
roadway, allowing an animal caught inside the fence to “jump out” while not allowing animals to 
jump inside the fence and right-of-way.  Ramps must be maintained so that they are climbable 
only from the direction of the roadway.  These escape routes are most effective when placed at 
V-shaped funnels in the fence line, and when vegetation provides cover on the ramps (Waters 
1988).  Ramps ought to be vegetated similarly to the natural surroundings (Bissonette and 
Hammer 2000).  Earthen return ramps cost about $6,000 each (price quoted in 2006; Pat Basting, 
MDT Missoula District Biologist, pers. comm.) and have been shown to be 8-11 times more 
effective than one-way gates in allowing ungulates to exit a Utah highway right-of-way 
(Bissonette and Hammer 2000).   

The greatest source of highway intrusion occurs at the ends of wildlife fencing (Wildlife 
Crossings Toolkit 2005, Pletscher and Griffin 2003, Clevenger et al. 2001, Foster and Humphrey 
1995, Woods 1990, Waters 1988, Ludwig and Bremicker 1983, Ward 1982).  The terminal 
points of fencing may result in AVC hotspots if specialized end treatments are not installed to 
prevent animals from entering the fenced right-of-way (Braden et al. 2005, Iuell et al. 2003, 
Clevenger et al. 2002b).  Fence end treatments are typically applied on the right-of-way, 
extending from the pavement to the last fence post where wing fencing angles away from the 
road (Wildlife Crossings Toolkit 2005, Clevenger et al. 2001).  Other fence end treatment 
designs, such as cattle or wildlife guards, electric fences and stone cobble may be somewhat 
effective, but may not be considered sufficiently safe for motorists, pedestrians and cyclists 
(Peterson et al. 2003).   

There is some disagreement about the effectiveness of end treatments in preventing animals from 
accessing the right-of-way.  One study showed pipe-style cattle guards to be a more effective 
barrier to ungulates than mesh (Waters 1988), while another study showed mesh to be very 
effective (Peterson et al. 2003); however the size of the ungulate (elk versus Florida Key deer 
[Odocoileus virginianus clavium], respectively) was likely the influential factor in these two 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Literature Review 

Western Transportation Institute  Page 10 

studies outcomes.  Cattle guards are effective for mitigating narrow access roads, but small 
mammals may become trapped if they fall into the well under the guard rails without escape 
ramps (Iuell et al. 2003).  A study of 12, 18 and 24 foot (3.6m, 5.5m, and 7.3m) cattle guards 
showed extending guard length gained “little advantage” and that a 10 by 12 foot (3.1m by 3.6m) 
guard is sufficient to deter deer (Reed et al. 1974). Yet another study demonstrated that elk 
readily jumped across single cattle guards, but that two cattle guards appeared to be wide enough 
to prevent such breaches (Clevenger et al. 2001).   

Highway intrusions can also occur when a fence is not properly maintained.  Holes or tears can 
be created by falling branches, erosion, vehicle collision, direct cutting by people, or as a result 
of poor construction (D’Angelo et al. 2005, Pletscher and Griffin 2003, Bissonette and Hammer 
2000, Boarman and Sazaki 1996, Foster and Humphrey 1995, Woods 1990, Feldhamer et al. 
1986, Falk et al. 1978).  Ungulates will jump fences which are too low or sag, push through 
openings, and even crawl under gaps as little as 23 cm (9 in) high (Falk et al. 1978).  Coyotes 
and other small to medium size animals will crawl under gaps and bears will climb wide mesh 
fencing (Clevenger et al. 2001, Jackson and Griffin 2000).  Bears and cougars will also climb 
support poles.  Regular maintenance and repairs are necessary for wildlife exclusion fencing to 
be most effective. 

3.5. Evaluation of Wildlife Passage and Exclusion Fencing 
Unfortunately, monitoring of crossing structures is often not performed or is an after-thought 
resulting in little or no statistically valid data to rigorously investigate effectiveness of the 
mitigation measures (Clevenger and Waltho 2003).  This section summarizes considerations for 
evaluating wildlife crossing structures to address the inevitable question that follows such 
installations: “Do these things work?”   

Basic steps for planning any scientific evaluation are listed below (Ratti and Garton 1996):  

1. Identify research questions and definitions of effectiveness; 
2. Identify methods to measure effectiveness; 
3. Design monitoring program; 
4. Pilot methods, adjust to meet goals, project budgets; 
5. Collect data for evaluation; 
6. Analyze data to determine effectiveness; and 
7. Report results. 

There are many research questions that may be of interest in an evaluation of mitigation 
measures to reduce animal-vehicle collisions and habitat fragmentation.  Two key components to 
address in research questions for such evaluations include: 1) direct impacts to drivers and 
wildlife as a result of wildlife-vehicle collisions; and 2) indirect impacts of roads and traffic as 
barriers that may affect wildlife movements and long-term population sustainability.  More 
complex ecological processes and larger-scale landscape functions may also be addressed when 
evaluating mitigation measures (and there is a need for such research), but the most basic 
questions should address both animal-vehicle collisions and habitat fragmentation issues.   

It is important to structure the research questions to address animal-vehicle collisions and habitat 
fragmentation issues together.  The human safety and economic issues related to animal-vehicle 
collisions are obvious and are often the impetus for considering mitigation measures; however, it 
is important to also consider how roads and traffic affect wildlife populations and movements 
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within their habitats.  For example, it is possible to reduce animal-vehicle collisions by limiting 
animal access to the right-of-way (e.g., using wildlife exclusion fencing), or animal-vehicle 
collisions may be reduced if traffic volumes increase to a level where wildlife no longer 
approach or attempt to cross the road, but without opportunities for wildlife to move from one 
side of the road to the other, wildlife habitats will be fragmented potentially resulting in greater 
vulnerability to disease, natural disasters, genetic inbreeding, ultimately with the potential for 
negative population effects (Strasburg 2006, Hoffmeister et al. 2005, Puky 2005, Forman et al. 
2003, Iuell et al. 2003, Mills and Conrey 2003, Proctor 2003, Bergers and Nieuwenhuizen 1999, 
Harrison and Bruna 1999).   

Goals to measure mitigation effectiveness relate to the research question(s), are supported with 
applicable literature, and are attainable and measurable.  A research question could be, “Do 
crossing structures and fencing reduce animal-vehicle collisions and allow animals to cross the 
road?” which could lead to a goal stating that mitigation will be considered effective if there is 1) 
a 50% reduction in animal-vehicle collisions, and 2) a 25% increase in animal movements across 
the road.   

A common misconception is that mitigation measures for reducing road mortality must be 100% 
effective.  This is not achievable as no fence is a perfect barrier and animals and vehicles will 
collide even on the most effectively mitigated roads.  Further, it is important to know what the 
statistically detectable changes in animal crossing or animal-vehicle collision rates will be when 
setting goals for effectiveness.  If preconstruction data exist, power analyses can be used to 
determine minimum statistically detectable changes and set measures of effectiveness.  If a the 
minimum detectable change in animal-vehicle collisions is 75%, then setting a goal of reducing 
animal-vehicle collisions by 25% would not be appropriate.   

With research questions and evaluation goals defined, the parameters of interest will drive the 
selection of methods to obtain relevant data.  The following text summarizes methods used in 
different monitoring programs to evaluate wildlife mitigation measures: 

• Road-kill or vehicle collision data.  The costs and technical skills required for collecting 
road-kill or vehicle collision data can be quite low.  There are sampling considerations to 
take into account (see Chapter  5, section  5.2.1 for a more detailed review of these 
considerations), and other variables to account for (e.g., traffic levels, animal population 
levels), but overall, this variable is likely the simplest parameter to use in before-after 
comparisons (Clevenger et al. 2002b).  A statistically significant reduction in the number of 
road-kills pre-mitigation compared to post-mitigation may indicate effectiveness if 
population changes are accounted for.   

• Snow tracking, tracking beds, tracking plates.  Mammal tracks can be used to document 
presence and movements relative to roads and mitigation measures, and, potentially, 
population trends (Mata et al. 2005, Ng et al. 2004, Clevenger et al. 2002b, Barnum 2001, 
Clevenger and Waltho 2000, Huijser and Bergers 2000, Beier and Cunningham 1996).  There 
are numerous resources that outline tracking techniques and track identification guides for 
North American mammals (Rezendez 1999, Zielinski and Kucera 1995, Stall 1989, Forrest 
1988, Halfpenny and Biesiot 1986, Murie 1974).  Numerous media are used to gather tracks, 
including snow, existing substrates, sand or marble dust, or soot next to contact paper (Mata 
et al. 2005, Foresman 2004, Ng et al. 2004, Barnum 2001, van Manen et al. 2001, Scheick 
and Jones 1999, Singleton and Lehmkul 1999).  Track beds inside culverts and crossing 
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structures protect tracking material and tracks from wind and rain, providing fairly reliable 
data when checked and raked smooth on a regular basis (Clevenger and Waltho 2000, Rosell 
et al. 1997, Rodriguez et al. 1996, Yanes et al. 1995).  Depending on availability of tracking 
media, this technique is low cost and low tech, although reading and interpreting tracks 
requires a fair amount of skill.   

• Camera and video monitoring:  Motion and heat-activated remote-trigger cameras capture 
images of animals, providing occurrence data (Kucera and Barrett 1993).  One potential 
advantage of cameras over tracking is that individuals may be identified if they have unique 
markings or visible tags (Karanth and Nichols 1998).  Most cameras also provide a day and 
time stamp, so activity patterns can be monitored.  With typical triggering ranges from about 
10-20 m from the camera, remotely triggered cameras can be set up to capture images of 
animals moving along a trail or can be set up in arrays to sample larger areas.  Costs vary 
depending on the duration of the study, type of camera, power requirements, and film 
processing; remotely triggered digital cameras may be more cost efficient than traditional 
film technology as they require no film processing.  Swann et al. (2004) provide an overview 
of technical considerations for remote-triggered 35mm cameras.  Video monitoring further 
allows the study of animal behavior, including failed crossing attempts (Gagnon et al. 2005), 
however the technical and cost considerations may be significant.   

• Radio-monitoring animal movements.  Radio telemetry studies can produce comparative data 
on animal movements relative to roads, wildlife fencing and crossing structures (Chruszcz et 
al. 2003).  Depending on the species and battery life of the equipment, individuals can be 
followed for years before and after construction (Dodd et al. 2003).  There are numerous 
issues to weigh when considering using radio-telemetry methods, including the permits and 
approvals required, personnel hours and safety risks involved in capturing, immobilizing 
animals, and hours and skills required for relocations collared animals (Samuel and Fuller 
1996).  Collars that use Global Positioning System (GPS) technology can provide data on 
animal locations at pre-programmed intervals as frequent as 15 minutes, providing an 
unprecedented level detail in animal locations.  These GPS location data are downloadable 
from a data platform or may be stored on the collar itself, which will be retrieved via VHF 
signal detection after the collar is released from the animal.  Cost of radio-telemetry methods 
is moderate to high, depending on the technology used, with GPS collars sitting at the more 
expensive, high-tech end of the spectrum.   

• DNA assignment testing.  This approach typically entails obtaining hair roots, often snagged 
using barbed wire at remote sampling stations where animals cross the wire, as a source of 
DNA to identify individual animals by micro satellite markers (i.e., genetically based 
assignments).  These data can detect genetic discontinuities within animal populations at 
different spatial scales and correlate these with environmental features such as man-made 
barriers, including highways (Riley et al. 2006, Proctor 2003, Thompson 2003, Conrey and 
Mills 2001). They can also identify where individual animals have been and test whether 
mitigation measures aid animal movements, dispersal rates and therefore connectivity 
between populations (Riley et al. 2006, Proctor 2003, Wills and Vaughan 2001, Luikart and 
England 1999, Waser and Strobek 1999).  Field skills and material costs required for this 
method are usually low while the lab skills and costs are high.   
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• Fecal stress measures.  Fecal stress measures can be used to quantify non-observable 
physiological responses via non-invasive sampling techniques.  Stress measures can be 
correlated to an animal’s proximity to roads and traffic levels over time (Creel et al. 2002, 
Wasser et al. 1997).  Comparison of fecal stress levels for populations proximate and distant 
from road features, or for populations before and after mitigation measures, can elucidate the 
extent to which the roads contribute to stress levels and whether crossing structures alleviate 
this stress.  As with other methods, it is important to account for other variables, such as age 
of the individual (Hardy 2001), hunting levels, human recreation levels, and quality/quantity 
of food resources; given the extensive variation that has been observed in studies using fecal 
stress measures, critical interpretation of results is important (Millspaugh and Washburn 
2004).  Similar to the DNA technique, skills and cost for the lab work are high for this 
technique, while field sampling is cheap and simple, but this novel technique can address 
questions related to mitigation effects.   

• Anecdotal information and observational data.  Anecdotal information from scattered 
observations of animals and their movements can be used as supplemental data or as 
appendices to a quantitative report (Huijser et al. 2006, Lee et al. 2006, Chruszcz et al. 2003), 
though these data must be treated differently than data that has been formally sampled.  Beier 
and Noss (1998) discuss the value of observations of dispersing animals when assessing the 
efficacy of corridors.   

• Accounting for confounding variables.  Numerous variables not of primary interest can affect 
interpretation of field data results.  Identification and quantification of these potential 
influences can allow compensation for these factors in analyses.  Such variables include: 

o Yearly fluctuations in animal populations (Cramer and Bissonette 2005, Puky 2005, 
Evink 2002);  

o Seasonal fluctuations in animal populations and/or habitat use (Cramer and Bissonette 
2005, Puky 2005, Evink 2002); 

o Climatic effects (Evink 2002); 

o Habitat differences along the road corridor (Anderson and Gutzwiller 1996); 

o Differences in human recreation and building density (Clevenger and Waltho 2005); 

o Traffic volume and speed (Smith 1999, Clevenger and Waltho 2000, Clevenger and 
Waltho 2005). 

Changes in animal abundance and distribution can be addressed through various indices (Murray 
et al. 2002, Krebs et al. 2001, Massei et al. 1998, Lancia et al. 1996, Harestad and Bunnell 1987, 
Freddy and Bowden 1983, Neff 1968).  GIS and satellite imagery can aide in compiling habitat 
data, including human activity density, although such “remote” techniques require higher skill 
levels and special computer software (Koeln et al. 1996).  Weather data may be collected in the 
field using special data loggers or regional data may be obtained from National Climatic Data 
Center (NCDC 2003).  Traffic data may be collected at a specific point of interest or from 
Department of Transportation resources. 

The ideal evaluation of wildlife crossing performance will collect data before and after the 
installation of the mitigation (pre- and post-mitigation).  Once a project has committed to 
installing crossing structures for wildlife, there may be 2-5 years before the construction begins.  
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Pre-mitigation data collection should begin as soon as possible to maximize the preconstruction 
sampling effort over time.  Long term monitoring captures more data and understanding of 
patterns through the “noise” of environmental and demographic stochasticity.  Small sampling 
windows of 1 or 2 years may lead to skewed results, misleading managers to shortsighted 
conclusions (Clevenger et al. 2002b).  Further, immediately conducting post-construction 
monitoring may yield skewed observations because it has been shown that animals need time to 
“learn” to navigate through landscapes with fencing and crossings (Clevenger et al. 2002b).  
Understanding the long-term and landscape-level effect of wildlife crossing structures in terms of 
communities, biodiversity, ecosystem processes, and landscape ecology may take many years 
(>10 yrs) before even beginning to suggest results (Clevenger and Waltho 2003, Stephens et al. 
2003, Clevenger et al. 2002b), especially if research questions hinge on long-lived, slow-
reproducing species that occur in low population densities, such as grizzly bears (Proctor 2003).   

In addition to the ideal pre- and post-mitigation comparison study design, incorporating spatial 
comparisons between mitigated and unmitigated areas that are otherwise similar will further 
improve the rigor of the study.  Before-After, Control-Impact (BACI) designed experiments are 
being used to evaluate the effects of a road that will be expanded (van Manen et al. 2001).  
However, randomization and replication of experimental units is difficult with studies of this 
type, and there are also many confounding factors to contend with even in a replicated study 
(Underwood 1994).  Pre-mitigation data must be comparable to post-mitigation data, so 
differences between the pre- and post-mitigation conditions should be considered when 
analyzing the data from these two time periods.   

If preconstruction data on animal movements or animal-vehicle collisions are not available, then 
post-construction study of animal movement behavior is an option.  Data on road-kill and animal 
use of crossing structures can be combined with other wildlife studies to reveal mitigation effects 
on the studied species (Smith 2005).  Null movement models can be developed post-construction 
to test the effect of roads on animal movement by comparing observed road crossings with 
hypothetical expected crossings (see Dyer et al. 2002, Whittington 2002, McKelvey et al. 1999, 
Serrouya 1999).  If there is no statistical difference between the two frequencies, then movement 
patterns are unaffected by roads, and crossing structures are deemed functional.   

The final step in the evaluation process is to report results.  Sponsors, stakeholders, other 
transportation agencies, and road ecology researchers will be interested in the outcomes.  The 
most useful and respected reporting is publishing in peer-reviewed journals that can be accessed 
by the widest audience.   

Finally, WTI offers suggestions to improve the evaluation process, data quality, and data 
analysis, as follows: 

• Define the research questions clearly; 

• Evaluate research goals to be sure they are obtainable given time and resources available; 

• Consult with a statistician early in the planning process; 

• Document standardized data collection procedures to ensure consistency of data over 
time; and 

• Enter data into an electronic database promptly and back it up frequently.  
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4. PROJECT HISTORY AND CASE STUDY 

The US 93 reconstruction planning efforts on the Flathead Reservation have encountered and 
overcome many challenges.  In the early 1980s, the Montana Department of Transportation 
(MDT), the Confederated Salish Kootenai Tribes (CSKT or “the Tribes”) and the Federal 
Highway Administration (FHWA) recognized the need to increase the level of service and safety 
for US 93 on the Reservation.  Differences in opinion and between cultures regarding how the 
road should be redesigned, however, divided these stakeholders for many years.  Only after the 
three governments built a foundation of trust, respect and mutual understanding was it possible 
to create a vision for the reconstruction.   

The case study presented here highlights the history of the project and its challenges, different 
points of view, and approaches that shaped the planning and design process.  Other resources 
documenting the history and characteristics of the US 93 reconstruction efforts include Marshik 
et al. (2001) and Anderson (2003; this paper also includes additional case studies and personal 
interviews from other wildlife mitigation project efforts).   

4.1. Early Challenges 
The CSKT is a sovereign nation and governing body that stands on equal ground with MDT and 
FHWA.  The Tribes own and manage the majority of Flathead Reservation land, but the US 93 
corridor is owned, managed, and maintained by MDT.  As part of the National Highway System, 
US 93 projects are eligible for Federal-aid funding and support from FHWA. Therefore, US 93 
planning and compliance are subject to review under the National Environmental Policy Act 
(NEPA) process and more than 50 environmental, cultural preservation, and social justice laws 
included under the NEPA “umbrella.”   

Early in the conception of the US 93 reconstruction proposals, MDT’s approach separated the 56 
mile stretch on the Flathead Reservation into four different projects.  Each project was to go 
through an independent Environmental Assessment (EA) process as a part of the NEPA process.  
The Tribes expressed concern about the cumulative impacts; after extensive discussions, the four 
projects were combined into one requiring a NEPA Environmental Impact Statement (EIS) 
process.   

The Notice of Intent to begin the EIS was published in August 1991.  The Draft EIS was 
completed in the fall of 1995.  MDT’s and FHWA’s preferred alternative was based on a four-
lane model while the Tribes preferred a two lane design.  In the spring of 1996, the stakeholders 
began serious discussions about their conflicting preferences.  Several issues emerged from these 
talks including safety, traffic operations, commuter related population growth, access 
management, Ninepipes National Wildlife Refuge, and bypasses of local communities.  It also 
became apparent that the state and federal governments embraced a very different culture than 
the Tribes. 

When the time came for the Final EIS and a Record of Decision (ROD), it was mandatory to 
attain Tribal support because of the CSKT’s status as a sovereign entity.  Following cultural 
traditions, the Tribal elders considered the next seven generations and how a four lane design 
would affect their home, culture and people.  The CSKT Tribal Council voted unanimously 
against MDT’s preferred alternative.   
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The process failed to find an adequate alternative that met all stakeholder concerns.  The three 
governments drafted a ROD acknowledging their similarities and differences.  In August 1996, 
FHWA published a ROD that stating “This decision does not provide for the physical 
construction of highway projects with Federal-aid funds until CSKT, MDT, and FHWA agree on 
the appropriate design and a project level environmental document is completed that addresses 
social economic and environmental impacts.”   

Deliberations regarding the reconstruction stagnated until mid-1997 when MDT and FHWA 
asked what activities the ROD allowed.  In February 1998, an amendment to the ROD by FHWA 
provided for “…acquisition of rights-of way that does not preclude future options…”  This 
allowed MDT to hire Skillings Connolly, Inc. to begin efforts to acquire right-of-way and 
develop an Access Control Plan.  Skillings Connolly approached this task via open and inclusive 
public involvement guided by a steering committee.  The steering committee included 
representatives from Lake and Missoula Counties and the incorporated cities on US 93 (Polson, 
Ravalli, and St. Ignatius), all major stakeholders within the US 93 corridor.  Critical to the 
development of the plan was one-on-one meetings with property owners that would be affected 
by obtaining, removing or purchasing property for highway access.  The steering committee 
played a key role in the public meetings and open houses that were held within the corridor.  
Monthly meetings were facilitated to arrive at full consensus before moving on to another issue.  
This inclusive approach illuminated the importance of comprehensive input and collaboration.   

In December 1999, the stakeholders agreed to hire a third party consultant to facilitate 
discussions between the three governments regarding the reconstruction approach.  Recognizing 
the successful outreach efforts with right-of-way acquisition and access management plans, 
Skillings Connolly was hired as a facilitator and subcontracted three additional consultants to 
bring information, analyses, and insight to help move the process forward.  The Midwest 
Research Institute was hired to analyze safety and level of service issues associated with the 
different alignment and lane options; Jones and Jones Architects and Landscape Architects was 
to resolve disputes and achieve consensus on desired outcomes building on their experience 
doing similar work for the “Paris Pike” highway project in Kentucky; and Herrera 
Environmental Consultants was subcontracted to address environmental issues.  With upper tier 
managers, staff and consultants of the three governments committed to a collaborative process, 
the stakeholders met monthly over the following year to understand each other’s concerns, build 
trust and respect between cultures, and create a vision for the reconstruction of US 93 that 
satisfied all parties.   

4.2. Spirit of Place: A Context-Sensitive Approach 
From December 1999 to December 2000, the Tribes, with assistance from Jones and Jones, 
introduced MDT and FHWA to a holistic approach that considered the landscape, people, and 
cultural values in addition to safety and level of service.  Essentially, this would be considered a 
“context-sensitive” approach in today’s transportation vernacular.   

Before design concepts were discussed, the Tribes asked that MDT and FHWA understand the 
“Spirit of Place”.  The Spirit of Place “encompasses a broader environmental continuum that 
includes the surrounding mountains, plains, hills, forest, valley, and sky, and the paths of waters, 
glaciers, winds, plants, animals, and native peoples. It encompasses the entire Mission Valley, 
Mission and Salish Mountains, Jocko Valley, and Rattlesnake Divide” (Skillings Connolly 
2000).  The Tribes emphasized, “The road is a visitor” and that it should respect the Spirit of 
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Place by responding to the landscape, rather than cutting through the landscape regardless of 
context.  This approach was captured in the following six goals established for the project: 

• Develop an understanding of the land and the relationship the Salish and Kootenai people 
have with the land; 

• Find ways the land can shape or influence the road; 

• Develop concepts that respect the integrity and character of the place, people, and 
wildlife; 

• Restore habitat areas that have been fragmented by the road and surrounding 
development; 

• Respect and restore the way of life in small communities along the road;  and   

• Create a better visitor understanding of the place that the Salish and Kootenai people call 
their homeland. 

To address these goals, the Tribes and landscape architects from Jones and Jones characterized 
different landscapes on the reservation into 14 large outdoor “rooms,” each distinguished by 
unique physical and visual features.  The characteristics of these 14 “rooms” or landscapes were 
summarized to guide the conceptual design phase. 

The Tribes wanted assurance that the road would respect and preserve their cultural sacred sites 
without informing non-Tribal entities of the specific locations of these resources.  Recognizing 
that tribal culture is intertwined with wildlife, the group opted to address cultural and wildlife 
issues as one and the same, in such a manner that would allow the Tribes to maintain discretion 
over the release of information that could result in defamation or damage of sacred sites.  

Protecting wildlife and cultural resources became an important focal point of the design 
discussions.  The Tribes stressed the importance of minimizing cultural resource and habitat 
destruction, degradation, fragmentation and wildlife mortality.  The incorporation of wildlife 
passages and wildlife exclusion fencing emerged as a key component early in the conceptual 
design phase of the project. 

Major concerns and priorities were identified on maps, allowing the group to delineate areas of 
“opportunities and constraints” based on the cultural, natural, and physical landscapes.  
Opportunities were mapped where scenic, natural and cultural areas could be avoided or where 
impacts could be mitigated. Constraints were identified in areas where such resources would 
unavoidably be impacted.  All of this information—the major issues, priorities, opportunities, 
and constraints—served as a framework for developing the initial design concepts.   

The stakeholders used an iterative process to suggest and review ideas and concepts for design.  
To simplify the process, the 14 landscapes identified as “rooms” were pooled into nine separate 
design segments covering the length of the project. For each segment, design concepts were 
generated for the following features: road alignment, lane configuration, fish and wildlife 
crossing structures and exclusion fencing, visitor outreach and interpretive opportunities, and 
community entry signs.  All ideas were considered unless all three governments agreed to 
discard any from consideration.   

The design concepts agreed upon by the three governments were adopted as the US 93 
Reconstruction Memorandum of Agreement (MOA; Skillings Connolly 2000) which 
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subsequently amended the EIS ROD as the “final preferred alternative” for the reconstruction 
effort.  This document included “Design and Alignment Concepts” outlining the goals, steps, 
opportunities, constraints, and priorities agreed to during the design process.  The “Design 
Guidelines and Recommendations” hones those concepts and describes the philosophy and 
vision for US 93.  Specific locations where these concepts would be applied were identified in 
the “Design Components Workbook”.  Additionally, the MOA included a “Wildlife Crossings 
Workbook” with in depth guidance for the design and placement of wildlife crossings and 
exclusion fencing.  Together, these components of the MOA established the model upon which 
all further design details and decisions hinged upon.   

4.3. The Technical Design Committee 
Another commitment of the MOA stated that the three governments would work together to 
achieve consensus throughout the remainder of the project.  A “Technical Design Committee” 
(TDC) was formed to ensure that the designs were developed in accordance with the MOA.  
Members of the TDC included representatives from CSKT, MDT, FHWA and their consultants.  
Other representatives from local counties, cities, Montana Department of Fish Wildlife and Parks 
and the US Fish and Wildlife Service were also invited to participate in TDC discussions as 
needed.  The MOA also stated that if the TDC could not come to consensus on an issue after a 
reasonable amount of analysis and discourse, it should be reported to the “Project Oversight 
Group” (POG) consisting of senior-level decision makers from the three agencies to resolve the 
conflict.   

In 2001, prior to beginning the design process, TDC members and Skillings Connolly and their 
sub-consultants held a “value engineering” workshop; the goal of this effort was to assess the 
MOA’s criteria and, without deviating from the spirit of the MOA, look for opportunities to 
increase cost-efficiency.  For example, many sections of the US 93 reconstruction were 
considered to be “fill poor” (i.e., earthen fill needed to be transported in from elsewhere); to 
increase cost-efficiency, a number of the 12 foot by 22 foot (3.7 m by 6.7 m) box culvert wildlife 
crossings identified in the MOA would be sunk into the ground 2 feet (0.6 m) deeper, reducing 
the amount of fill (and hence, expense) needed to raise the road to pass over the crossing, with 
the trade-off of reducing the overall height of the underpass to 10 feet high (Dale Becker, CSKT 
Biologist, pers. comm.).  Decisions approved with consensus among the three governments were 
documented and carried into the design process.   

The TDC began meeting twice a month in 2002, and by 2003, once a month, to collaboratively 
address the details brought forth during the design process.  Eight engineering design firms were 
awarded individual projects (Table 2).  (One final 11.6 mile [18.7 km] section of US 93, in the 
Ninepipes area, underwent a Supplemental Environmental Impact Statement [SEIS] process and 
was not yet to the design phase.)  Working together, the TDC and their consultants successfully 
incorporated the concepts in the MOA and the design workbooks into the designs.  Any 
deviations from the MOA were granted only after discussion, negotiations, and consensus 
occurred between the three governments.  All decisions made by the TDC or the POG were 
documented via meeting minutes, and a matrix of decisions and issues requiring further 
information or follow-up was continually updated throughout the design process.   

Before construction began, FHWA held an Accelerated Construction Technology Transfer 
(ACTT) workshop.  The workshop assembled a diverse group of experts from governmental 
agencies, academia, and private sector, within and outside of Montana, to discuss potential 
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concerns and possible solutions to avoid pitfalls and delays that can occur on construction 
projects.  Participants focused on issues related to construction, traffic/workzone safety, right-of-
way/utilities/railroad, public relations and intelligent transportation system applications, 
geotechnical and materials, innovative contracting, environment, and structures.  The TDC and 
others involved with the development of the US 93 reconstruction efforts provided context to 
guide group discussions and sift through ideas to ensure the concepts outlined in the MOA were 
maintained while different ideas were explored.   

1Supplemental Environmental Impact Statement expected summer 2006; reconstruction design and wildlife 
mitigation measures yet to be determined. 

Most design projects were completed in 2004, and the first projects were contracted and went to 
construction in 2004.  Not including the highway section undergoing the SEIS, the last projects 
to go to construction are expected to be completed in 2009.  Specific details related to the design 
of the wildlife mitigation measures are discussed in the next section. 

The collaborative approach and the TDC, while requiring a significant commitment of time and 
staff effort, have successfully developed trust, respect and open communication between the 
three governments.  As a result, the three governments have agreed to continue to address other 
transportation projects on the Reservation in the future with this collaborative, group effort 
approach (Ted Burch, FHWA Program Development Engineer, pers. comm.). 

4.4. Wildlife Mitigation Measures 
The MOA outlined criteria justifying the need for wildlife crossings.  The best available 
information regarding road kill occurrences, winter and summer tracking and trails, habitat, and 
engineering practicality was used to specify crossing structure location, type, and dimensions for 
41 underpasses and one overpass, along with wildlife exclusion fencing.  This guidance was 
compiled in the “Wildlife Crossings Workbook” in the MOA and served as the primary 
guidance, along with the other tenets of the MOA, for designing the mitigation measures.   

Table 2: US 93 reconstruction segments and design consultants.  

Road Segments (listed from south to north) 

Project 
Length 
(miles) Design Consultant 

Evaro - McClure Road 6.4 Entranco 

McClure Road - North end of Arlee 5.6 Allied Engineering 

North end of Arlee - White Coyote Road 1.5 WGM Group; Frontier-West, L.L.C. 

White Coyote Road - South Ravalli 6.7 Robert Peccia and Associates 

South Ravalli - Old US 93 4.7 TDH 

Old US 93 - Red Horn Road 5.4 Stahly Engineering 

Red Horn Road - Spring Creek/Baptiste Road1 11.6 Skillings - Connolly 

Spring Creek/Baptiste Road - Minesinger Trail 7.3 Carter - Burgess 

Mud Creek Structures 0.37 Carter - Burgess 

Minesinger Trail - MT 35 (Polson) 2.1 Stelling Engineering; Riverside 
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In the spring of 2002, at the onset of the TDC meetings and design process, the TDC and the 
various consultants visited all 42 wildlife crossing structure sites identified in the MOA for group 
discussions regarding design and final placement of the mitigation measures.  Details of these 
site visits and additional relevant information were compiled into a document distributed to the 
eight design firms as a reference to help standardize the design process (Jones and Jones 2002a).   

In the summer of 2002, considerable time was dedicated to discussing details for designing 
wildlife mitigation.  The TDC and the consultants were guided by the MOA, but each design 
team had to refine the locations and design of the structures to “fit” the local conditions.  
However, few, if any, of the consultants had previous experience designing wildlife crossings 
and exclusion fencing (not surprisingly, given that the incorporation of such measures into 
highway projects was a somewhat novel concept at that time).  To standardize designs across the 
8 design segments, a technical memorandum assimilating information from experts and literature 
provided guidance for the design consultants.  Specifications for wildlife exclusion fencing, 
wildlife-friendly fencing (used at locations where wildlife movement was desired but livestock 
movements were not), jump-outs, fence placement and connections to bridge abutments or 
crossing structures, and wildlife guards were developed (Appendix A; Jones and Jones and 
Western Transportation Institute 2002).  The details provided were considered “typicals”; it was 
expected that these details would be adapted based on specific site conditions without deviating 
from the design intent laid out in the MOA.   

Another technical memorandum provided further guidance for the installation of features related 
to the post-construction monitoring (Appendix B; Jones and Jones 2002b).  Anticipating the use 
of photo-monitoring and track bed methods, this memorandum included details for designing and 
installing mounts for remote-triggered cameras inside the underpasses and in an array to cover 
the wide overpass to capture images of wildlife using these structures.  Track bed particulars 
were also provided so that these features were incorporated into design and reconstruction.  The 
TDC instructed the consultants to create designs for each structure including both concrete and 
steel options.   

The consultants presented their design concepts at TDC meetings incrementally to obtain 
feedback and ask questions as the designs advanced toward completion.  Sub-consultants of the 
design firms would also interact with the TDC as needed to discuss details related to landscaping 
and vegetation.   

Toward the end of the design process, concerns were raised about the length of wildlife 
exclusion fencing originally committed to in the MOA for the Evaro and Ravalli Hill areas.  At 
the request of CSKT Wildlife Biologist Dale Becker, WTI reviewed and summarized literature 
and the best available information regarding the effectiveness of fencing and details that affect 
the performance of the fencing.  Further, WTI analyzed existing track bed data and animal-
vehicle collision data in the areas where it was proposed to shorten fencing.  Evidence of 
effectiveness for various techniques to limit wildlife access to the right-of-way through gaps, 
around the ends of the fencing, by climbing over or burrowing over the fence was presented as 
well (Hardy and Huijser 2004; Appendix C).  Based on the synthesis of this information, WTI 
emphasized the importance of including measures at gaps to prevent breaches of animals onto 
the right-of-way, potentially creating a safety situation of greater significance when animals are 
trapped within the fences versus when no fencing exists.   
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Ultimately, the TDC opted to shorten the fencing in the Evaro area at the locations where there 
would have been a preponderance of gaps in the wildlife fencing where driveways and side roads 
accessed the highway.  In addition to installing and maintaining the fencing in this area, the 
installation and maintenance of wildlife guards and gates at these gaps would require significant 
additional expense given the number of gaps in these stretches.  Further, if multiple gates or 
wildlife guards failed to prevent wildlife from moving into the right-of-way and this became a 
frequent occurrence (due to the sheer numbers of gaps in this area with potential to fail to control 
animal movement), it is possible that this could create a safety situation of greater significance 
than if the wildlife fencing were not there at all.  Such a situation would be difficult to address, 
short of completely removing the fencing.   

Fencing was also shortened in the northern stretches of the Ravalli Hill wildlife mitigation area; 
the animal-vehicle collision and track bed crossing data indicated these areas had relatively 
lower wildlife crossing and vehicle-collisions.  Additionally, the existing wildlife-exclusion 
fencing encompassing the National Bison Range adjacent to this stretch of road, in combination 
with wildlife fencing on the road, could limit wildlife movements with the potential to lead 
animals between these two fences to the town of Ravalli and the junction of US 93 with MT 
Highway 200, where conflicts could occur.  Although the highway wildlife fencing at the 
southern end of the Ravalli Hill wildlife mitigation section parallels the Bison Refuge, the 
funneling effect would be reduced with the shortened fence lengths in this area. 

Appendix D summarizes the wildlife mitigation originally outlined in the MOA and the final 
outcomes of the design process.  In summary, seven crossing structures originally included in the 
MOA were not included in the final design plans, but seven “new” crossing structures were 
included in the final designs at locations relatively close to where the seven crossings in the 
MOA were designated and three “new” stock crossings that were not specified in the MOA were 
included in the final plans.   

A single over-crossing, a 150-foot (45.7 m) wide bridge of landscaped wildlife habitat, was 
strategically placed in the Evaro area for the following reasons: 1) the Evaro Hill area has been 
modeled as an important habitat to link the Northern Continental Divide Grizzly Bear Recovery 
Area (including Glacier National Park and the Bob Marshall and Scapegoat Wilderness areas) 
with the Selway-Bitterroot Grizzly Bear Recovery Area (Mietz 1994); 2) this is one of the few 
areas of the project that has forested habitat on both sides of the road and is likely to provide 
cover for many species of wildlife moving through the area, including “more illusive” species 
(grizzly bears, wolves, lynx, wolverine, fisher) that might move from one mountain range to 
another; and 3) the CSKT owns much of the land in the area where the over-crossing will be 
built and the tribes are committed to not developing or selling this land but to conserving the 
land as a wildlife corridor.   

In conjunction with the crossing structures, 16.6 miles (26.7 km) of 7.6 foot (2.3 m) high wildlife 
exclusion fencing will be installed in the study area.  Multiple jump-outs will be installed to 
allow animals to escape the fenced sections of highway.  Final designs include five sections of 
greater than 0.5 miles (0.8 km) fencing that will direct wildlife to most of the wildlife crossings 
(Table 3).  These five continuous sections of wildlife fencing are not connected to one another, a 
characteristic different from the Banff Trans-Canada Highway fencing, which has continuous 
fencing (with passages) along this controlled access highway.  With numerous access roads, 
fencing was not always appropriate or needed; as previously mentioned, the uncertainty of 
maintaining a barrier to wildlife movements into the right-of-way at these gaps is of particular 
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concern and interest, especially given that such an extensive mitigation effort has not previously 
been applied in a landscape with multiple uses and anthropogenic influences.     

In addition to the five extended sections of fencing connecting the numerous crossing structures, 
10 additional, independent wildlife passages will have approximately 328.1 feet (100 m) long 
“wing fences”, extending at approximately 45 degree angles from the crossing structure openings 
to funnel animals to these more “free-standing” crossing structures; these wing fences, for the 
most part, will not be connected to the next section of fencing.  Five of the crossings will not 
have wildlife fencing, such as bridges, culverts intended for aquatic passage alone or where 
natural features of the landscape, such as drainages, are expected to lead animals to the crossings 
without fencing.  

There were several locations with no wildlife fencing (Table 4).  In many places, these gaps were 
mitigated with wildlife guards or metal gates.  However, assessment of design plans that were 
available at the time this report was drafted revealed several gaps that did not appear to have 
such mitigation.  Long sections of unmitigated gaps between ends of the fencing were 
anticipated as some areas were never planned to have any wildlife fencing.  Most shorter gaps in 
the fencing are mitigated according to the design plans; however the handful of shorter, 
unmitigated gaps where access roads intersect more extensive lengths of fencing are of concern 
given that this could result in wildlife accessing and becoming trapped in the right-of-way where 
the risk of an animal-vehicle collision may be higher if the animal can not escape.   

Table 3: Locations and lengths of wildlife exclusion fencing planned for the US 93 reconstruction effort, 
including numbers of wildlife crossings within each given fencing segment.  Fencing lengths were calculated 
using the west (southbound) stretch and are less than the difference between the mile posts due to the gaps 
(both mitigated and unmitigated) within each stretch of fencing.  Design plans indicate 11 wildlife crossings, 
including some span bridges, will be installed without adjacent fencing   

Type of Fence Start Mile Post End Mile Post
Fencing 
Length 
(miles) 

Fencing 
Length 
(km) 

# Xings

9.4 11.1 1.2 2.0 6 
18.7 19.2 0.4 1 0.6 4 
22.9 26.8 3.4 5.4 5 2 
27.7 28.8 0.9 1.5 2 

Continuous 
Stretches 

57.6 58.6 1.0 1.6 1 
31.9 32.1 0.2 0.3 1 
32.6 32.8 0.2 0.4 1 
34.1 34.2 0.1 0.1 1 
34.4 34.4 0.1 0.1 1 
34.7 34.8 0.1 0.2 2 
48.6 48.8 0.2 0.3 1 
49.3 49.4 0.2 0.3 1 

Short Sections 
(“Wing Fencing”) 

51.0 51.3 0.3 0.4 1 
1.This value is less than 0.5 miles because of the mitigated gaps in fencing, largely due to wildlife crossings.   
2.Does not include 3 small mammal crossings 
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Table 4:  Gaps in US 93 wildlife exclusion fencing, categorized by the length of the gap and whether gaps 
included structures (cattle guards, swing gates) to control wildlife passage onto the right-of-way.  Longer gaps 
typically encompass stretches of road where no wildlife mitigation was planned, while shorter gaps usually 
are indicative of points that intersect sections of wildlife fencing to access US 93. 

GAPS <0.005 
miles 

>0.005, <0.1 
miles 

>0.1, <0.5 
miles 

>0.5 
miles 

Mitigated 26 19 3 0 

Unmitigated 1 3 9 16 

Unknown/Partially 
Mitigated 17 1 3 0 

Total 44 23 15 16 
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5. PRECONSTRUCTION FIELD STUDY 

Since the inception of reconstruction proposals for US 93 on the Flathead Indian Reservation, 
concerns about impacts of highway reconstruction on resident wildlife populations have spurred 
related research efforts.  Early in the reconstruction planning process, five alternative lane 
configurations were proposed by FHWA and MDT.  Potential impacts of these alternatives on 
wetland and riparian habitats and wildlife connectivity across the Reservation, and mitigation 
measures to alleviate these impacts, were evaluated by Becker (1996).  Along US 93 adjacent to 
Ninepipes National Wildlife Refuge, Fowle (1996a, 1996b) determined road kill rates for 
western painted turtles (Chrysemys picta bellii) were significant, and recommended mitigation 
measures be implemented to decrease turtle mortality and increase the permeability of the 
highway.  Based on landscape and grizzly bear habitat modeling, the Evaro Hill area on US 93 at 
the south end of the Reservation has been highlighted as the single corridor and linkage zone 
connecting the Bitterroot/Selway area to the Mission Mountains/Bob Marshall Wilderness 
grizzly bear populations (Mietz 1994).  Servheen et al. (1998) demonstrated that high-speed 
highways such as US 93 have adverse effects on grizzly bears, by inhibiting movements, genetic 
and demographic exchange and increasing mortality.  These studies, along with other published 
research papers addressing transportation impacts on ecological systems in other locations, 
reinforced concerns about minimizing US 93’s impacts on wildlife and habitats.   

Reconstruction discussions often centered on these concerns, eventually leading to the 
incorporation of wildlife mitigation efforts (see Chapter  4 for details).  Because these measures 
were being applied in a mixed-use rural landscape, where it was not clear how animals might 
respond to the mitigation measures, it was agreed that a field study to evaluate how these 
mitigation techniques perform in a “real world” rural setting would be conducted.  An oversight 
committee consisting of five representatives from CSKT, FHWA, MDT, and WTI 
collaboratively established the goals and focus of the evaluation field study.   

The oversight committee agreed that a “before-after” approach would be used and while all 
species of wildlife were of interest, the evaluation was to focus on deer species (white-tailed deer 
[Odocoileus virginianus] and mule deer [Odocoileus hemionus]) and black bear (Ursus 
americanus).   The primary goals of the field evaluation were to determine what effect US 93 
wildlife crossing structures and wildlife exclusion fencing have on: 1) the frequency of animal-
vehicle collisions (AVCs); and 2) habitat connectivity, specifically in terms of successful 
wildlife movements across US 93.   

The first goal will be addressed by comparing AVC reports for the 56 miles (90 km) of US 93 to 
before and after installation of the mitigation measures.  Considerations regarding the analyses of 
these data and a summary of the preconstruction baseline AVC data are detailed in the first 
subsection of this chapter.   

The second goal requires quantifying and comparing wildlife-highway crossing events before 
and after construction.  Preconstruction deer and bear crossings were sampled via sand track 
beds situated on the highway shoulder to estimate movements across three sections of the road 
where the longest segments of contiguous fencing will be installed.  Post-construction wildlife 
crossings will be monitored at wildlife crossing structures and at the ends of the fence to 
compare to the preconstruction crossing rate estimates in the same area (post-construction 
crossing monitoring will occur at all crossings, not only where preconstruction crossing data was 
collected; see Chapter 7 post-construction monitoring recommendations for details).  The 
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preconstruction tracking methods, crossing data characteristics, resulting estimates of total 
crossings in the areas to be fenced are detailed in the second subsection of this chapter.  
Ancillary data collection efforts and results are presented in the following subsections.  The final 
subsection synthesizes the preconstruction field data results, acknowledging the challenges of 
making inferences given the inherent variability and complexities of the data.   

5.1. Study Area 
In northwestern Montana, US 93 runs the spine of the Rocky Mountains for 286 miles from the 
United States-Canada border at Port of Roosville to the Montana-Idaho border at Lost Trail Pass.  
While many sections of US 93 in Montana have recently undergone or are planned to undergo 
reconstruction, the US 93 reconstruction project featured in this study spans 56 miles (90 km) of 
the Flathead Indian Reservation from Evaro, at the southern boundary of the Reservation, to 
Polson (Figure 1), near the northern boundary of the Reservation.   

The Flathead Indian Reservation encompasses the west face of the Mission Mountain Range 
(elevation up to 2993 meters, 9820 feet) along the eastern boundary, the southern end of Flathead 
Lake at the northern boundary, Rattlesnake Divide Mountain Range along the southern 
boundary, and valley bottoms transitioning to mountain foothills along the western boundary.  
The Flathead River and its numerous tributaries flow through the Reservation and form valleys 
including the Mission Valley, Jocko Valley and the Lower Flathead Valley.   

 
Figure 1: The Flathead Indian Reservation in northwestern Montana including major highway 
routes.  The US 93 reconstruction effort and evaluation study area traverses 56 miles from Evaro to 
Polson.  Stars represent the Evaro, Ravalli Curves and Ravalli Hill study areas from south to north, 
respectively, where more intensive sampling efforts were focused. 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Field Study 

Western Transportation Institute  Page 26 

Climate on the Reservation is dominated by Pacific maritime systems.  Winters are relatively 
mild for the northern Rockies but the region is commonly inundated with arctic air originating 
from the north and east.  Precipitation ranges from 12 inches in the less-mountainous west to 
over 100 inches in the east.  Most precipitation is in the form of snow in fall, winter, and spring.  
Temperatures vary from below 0° F in winter to close to 100° F in the summer. Summers tend to 
be dry and the growing season ranges from 45 to 120 days.  

Habitats on the Reservation range from agricultural lands, shrub and grasslands, and wetland and 
riparian areas in the valley bottoms to subalpine habitats at the higher elevations.  A significant 
array of wetland complexes and glacial “pothole” lakes and ponds are found on the Reservation 
as well.  These habitats support 309 species of birds, 66 species of mammals, 9 species of 
amphibians, and 9 species of reptiles (Tribal Wildlife Management Program, unpublished data).  
Of particular interest, the Reservation supports resident and migrant free-ranging native species 
such as bull trout (Salvelinus confluentus), grizzly bear, Canada lynx (Lynx canadensis), bald 
eagle (Haliaeetus leucocephalus), gray wolf (Canis lupus), and mountain lion (Felis concolor).  
Black bear, moose, elk, white-tailed deer, mule deer, pronghorn antelope (Antilocapra 
americana), bighorn sheep (Ovis canadensis), coyote (Canis latrans), and western painted turtles 
(Chrysemys picta bellii) reside on or have been known to pass through the Reservation.  In 
addition, bison (Bison bison) have been reestablished as a viable captive population in the 18,500 
acre National Bison Range.   

The Flathead Indian Reservation is home to the Confederated Salish and Kootenai Tribes 
(CSKT), which include the Bitterroot Salish, the Pend d’Oreille and the Kootenai tribes. These 
tribes historically ranged across more than 20 million acres in areas now known as western 
Montana, Idaho, British Columbia, and Wyoming.  The 1855 Hellgate Treaty allocated about 
1.25 million acres to these tribes to establish the Flathead Reservation.  In the late 1800s, federal 
legislation set the stage for allotting certain parcels of reservation lands to tribal members.  Later, 
the federal government opened reservation lands to homesteading for non-tribal members on 
lands that had not been previously allotted to tribal members.  The tribes have been reacquiring 
lands on the reservation since the 1940s; by the mid-1990s, the majority of lands on the 
reservation were owned by the CSKT and held in trust by the federal government or by tribal 
members.  Reservation landscapes are managed for a variety of uses, with the valleys dominated 
by agricultural activities such as irrigated farming and livestock production, as well as residences 
and businesses, and mountain environs supporting forestry, recreation and hunting and fishing 
for CSKT tribal members.   

The US 93 corridor, including the highway and the right-of-way, is owned and managed by the 
Montana Department of Transportation (MDT) as an easement through the Reservation.  As the 
only major highway between Interstate-90 near Missoula and northwestern Montana, US 93 is a 
critical route within and beyond the region.  Each year, visitors travel US 93 through the 
Reservation towns of Evaro, Arlee, Ravalli, St. Ignatius, Ronan, Pablo and Polson to destinations 
such as Glacier National Park, generating an important tourism industry for many businesses in 
the area.  In 2003, prior to reconstruction, the Average Annual Daily Traffic for the 
reconstruction segments ranged from 7440 to 11,300 (MDT 2006).  According to the traffic 
safety analysis included in the MOA (Skillings Connolly 2000), the proportion of fatal accidents 
on this section of US 93 (4.8 percent) is higher than the statewide average for National Highway 
System routes (1.7 percent) and the proportion of nonfatal injury accidents (44.2 percent) is also 
greater than the statewide average for similar routes (37.1 percent). Thus, high accident severity 
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(i.e., high risk of death or injury when an accident occurs) is a major concern in this corridor.  
Projections of significant growth in the region call for a significant increase in the level of 
service for US 93.    

As mentioned previously, AVCs and post-construction monitoring of the wildlife crossings, ends 
of wildlife fencing, and gaps in wildlife fencing will be assessed across the entire length of the 
reconstruction project, from Evaro to Polson (excluding the 10-mile Ninepipes section between 
St. Ignatius and Ronan, which will be reconstructed at a later time).  Preconstruction crossings 
will be monitored and compared to post-construction crossings only between Evaro and St. 
Ignatius, a subsection of the larger study area (Figure 1).  The Evaro, Ravalli Curves and Ravalli 
Hill areas (represented by stars in Figure 1) were selected for more intensive monitoring efforts, 
because these areas are slated for the longest continuous stretches of wildlife exclusion fencing 
and crossing structures.  The Evaro area is a forested narrow valley that holds high value as 
habitat amenable to use by grizzly bears and other megafauna of interest (McCoy 2005, Becker 
1996, Mietz 1994).  The Ravalli Curves area is grassy river valley flanked by steep, rolling hills, 
and contains some wetland/riparian elements while Ravalli Hill is a high, dry, grassy hill that 
divides the Mission Valley and Ravalli Canyon (Skillings Connolly 2000, Becker 1996).   

5.2. Animal-Vehicle Collisions 
The first goal of the evaluation study is to assess AVCs before and after mitigation measures are 
installed to provide quantifiable evidence of their effect on this parameter.  Considerations 
regarding the analysis of AVC data are outlined below, followed by an account of the sources, 
methods, and characteristics of the preconstruction baseline AVC data.  Extensive details about 
preconstruction field data collection methods and considerations are documented in the US 93 
Field Monitoring Handbook created for this project (Hardy and Huijser 2005). 

5.2.1. AVC Data Considerations 
Information on what, where, when, and how often species are killed on roads can help assess if 
and what types of efforts to reduce AVCs may be needed, where these mitigation measures 
should be located, and whether mitigation was effective in reducing AVCs.  However, it is 
important to understand how AVC data were collected as this affects the assumptions, analytical 
approaches and interpretation of results (Knapp et al. 2004).  The following considerations need 
to be taken into account when requesting, compiling, analyzing, and applying results from AVC 
databases: 

• Sampling framework: who collected the data & how were the data collected; 

• Sampling intent: what was the intent for collecting AVC data; 

• Sampling effort: were AVCs reported via systematic monitoring methods or opportunistic 
observations; 

• Sources of error: to what degree has under-reporting, spatial inaccuracies, and observer 
bias or fatigue affected the dataset; 

• Other parameters: what other ancillary information was recorded with each AVC report; 
and 
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• Combining AVC datasets:  how might differences in sampling areas, time periods or 
methods affect the combined dataset and is it possible to detect and reduce duplicate 
observations. 

More than 70% of states maintain long-term records of AVCs, but few (20%) actively research 
the magnitude of the AVC problem (Sullivan and Messmer 2003).  Romin and Bissonette (1996) 
surveyed state natural resource agencies regarding their AVC data collection procedures in 1991.  
Of 43 responses, 35 reported collecting such data while 8 lacked accurate data.   

Motives and methods to document collisions between animals and vehicles can vary, affecting 
the parameter that is reported; e.g., AVC reports versus road-kill carcass observations.  Law 
enforcement and/or insurance agencies may report only collisions that cause vehicle damage or 
human injuries or fatalities and in some cases, only AVCs that have caused some minimum 
damage threshold are reported (IIHS 2004).  Departments of transportation may report large 
animal carcasses removed from the roadway, but not animals that died away from the road edge 
or small species that pose little threat to traveler safety.  State and Federal wildlife management 
agencies may only document carcasses of species of special interest, such as game animals, rare 
or unusual observations of wildlife, or threatened/endangered species.   

Often, AVCs are documented incidentally or opportunistically, resulting in a dataset that under-
represents and inconsistently reports AVCs.  Estimates of deer-vehicle collisions based on police 
reports may be less than half of what might be observed in more intensive field study efforts 
(Knapp et al. 2004, Sullivan and Messmer 2003) and it’s estimated that only 15 to 35% of all 
AVCs are reported (Sullivan and Messmer 2003, Sielecki 2004).  Systematic approaches for 
reporting road kill carcasses can reduce (but not necessarily eliminate) some of these problems 
that affect datasets of opportunistically collected data.  Even consistent and routine monitoring 
may underestimate AVCs by a factor of 12-16 times or more for smaller and less visible species 
(Slater 2002).   

Whether using opportunistic or systematic methods to document AVCs or road kills, multiple 
sources of process and sampling variation will affect AVC or road kill datasets.  Sources of 
process error include the disappearance of carcasses; for example, small carcasses in the lane of 
travel disintegrate as vehicles pass over the dead animal, or carcasses may be scavenged or 
removed from the road before researchers document the presence of the kill.  Animals may die 
away from the roadway where road kills may not be detected (Sielecki 2004, Slater 2002, 
Sielecki 2001, Case 1978).  McCaffrey (1973) found that where landscapes were more open, 
more road-kills may be found (McCaffrey 1973); conversely, Slater (2002) found that the wider 
the clear zone or verge, the fewer road kill observations were made.  Sources of sampling error 
include non-response error, observer fatigue or observer bias (Thompson 2002).  Other causes of 
underreporting include errors in filling out forms, poor training and lack of motivation 
(Clevenger et al. 2002b). 

Spatially accurate road-kill locations are necessary if mitigation efforts designed to reduce road-
kills are to be effective.  A study of the spatial error associated with wildlife-vehicle collision 
reports (Clevenger et al. 2002a) found that the reported location could be off by more than a 
mile.  A low level of spatial precision can locate a general problem area, but may not be spatially 
explicit enough to provide information on exactly where to locate a crossing structure.   

Multiple sources of AVC data may be combined to provide a more comprehensive and accurate 
picture of the problem; however the user must be aware of the risk of double counting AVCs 
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when datasets cover the same area over the same period of time.  Therefore, when pooling 
datasets from different sources, the collective dataset needs to be systematically screened to 
eliminate redundant information.   

The considerations outlined above limit the use of AVC datasets to varying extents.  However, 
careful assessment, screening, analysis and interpretation of results using such data can provide 
an indication of areas of AVC concern for more specific study and trends to assess how 
mitigation measures affect AVCs.    

5.2.2. US 93 Preconstruction AVC Data 
Given available resources and budgets, WTI opted to work with existing (and future) AVC data 
from the following three sources:   

• MDT Safety Bureau’s Montana Highway Patrol (MHP) accident database,  

• MDT Maintenance reports of road-killed carcass removals, and 

• Montana Fish Wildlife and Parks (MTFWP) supplemental black bear road kill reports.  

With a daily presence on US 93, MDT and MHP datasets provided the most consistent AVC and 
carcass data over the longest period of time (1992—2005).  MTFWP has collected supplemental 
black bear carcass data since 2000.  The combined AVC and carcass datasets are the “best 
available information” that will be used to track general trends in AVC occurrences over time.   

Prior to conducting any analyses, the MDT and MHP datasets were combined and systematically 
screened to eliminate redundant information (i.e., duplicate records).  Next, MTFWP bear kill 
data were added if the date and location of the kills were specific enough to cross-check against 
MDT and MHP records.  The following common variables were included in the final combined 
dataset:   

• Date of occurrence; 

• Mile marker (to the 0.1 mile); 

• Species of animal; 

• Sex of animal (if identified); 

• Age of animal (juvenile vs. adult, if identified); and 

• Data source (MHP report, MDT carcass removal data, or MTFWP bear kill records). 

Rules were established to address potential duplicate records (Hardy and Huijser 2005). If two or 
more sources report an AVC/carcass record involving the same animal species and sex (if 
reported) and if these locations are within 0.2 miles and/or within 2 days of each other, the 
records were assumed to be duplicates, and redundant information was censored.  Careful 
attention was paid to details such as whether two different animals were hit at the same 
time/place (e.g., when an adult and young of the year cross and are hit together, or if an adult is 
hit and their young lingers nearby and is hit shortly thereafter) to ensure both animals were 
accounted for only once and that the second animal was not deleted.   

After screening for duplicates, the remaining data were examined (Table 5).  Reported AVC or 
carcass removal events ranged from 4 to 16 per year between 1992 and 1997, a seemingly low 
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number of occurrences for this 56 mile stretch of heavily-traveled rural road.  In 1998, MDT 
Maintenance established carcass removal reporting protocols; presumably as a result of that 
initiative, the annual number of reported AVCs and carcass removals ranged from 31 to 37 from 
1998 to 2001.  In 2002, WTI approached the maintenance districts that report carcass removals 
on US 93 on the Flathead Indian Reservation to explain the importance of these data to this 
project and asked that they continue to collect these data just as they had been doing since 1998.  
Additionally, in 2003, an MDT biologist circulated a memorandum to maintenance staff 
emphasizing the importance of reporting carcass removals (Pat Basting, MDT Missoula District 
Biologist, pers. comm.).  The number of reported AVCs and carcasses in 2002 spiked, with a 
total of 98 events recorded across the same 56-mile stretch as the previous years.  It is possible 
that more AVCs occurred, or it is perhaps more likely that the maintenance staff inadvertently 
increased their efforts given their awareness of the significance and purpose of these data.   

 

Based on the observation that reporting efforts were variable over the years, only data from 
2002—2005 were used for preconstruction AVC analyses.  These data appear to be relatively 
consistently reported and represent an index of AVC occurrences that happened immediately 
prior to construction.  The majority of observations from 2002—2005 were deer (93%): white-
tailed, mule deer, or undetermined deer species (Figure 2).  About 5% of reported kills were 
black bears.  The remainder of road kills included grizzly bears and other wild species (e.g., elk, 
raccoons, turkeys and coyotes).   

Table 5:  Annual numbers of AVCs and road kill carcass removals reported from 1992 through 2005 by 
MDT, MHP and MTFWP sources for US 93 from Evaro to Polson, Montana.  “Other (Wild)” includes elk, 
raccoons, turkeys, and coyotes.  “Other (Domestic)” includes cattle and horses. 
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Deer 4 7 9 7 10 14 26 30 33 29 98 83 83 96 
Black Bear 0 0 0 1 0 1 5 2 3 1 8 9 2 1 
Grizzly Bear 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Other (Wild) 0 0 0 0 1 1 0 0 1 0 2 1 2 2 
Other (Domestic) 0 0 0 0 0 0 0 0 0 0 0 0 1 2 
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The 2002—2005 AVC dataset was used in the analyses reported below.  Although all AVCs are 
of interest for safety, cultural, economic and resource management reasons, this study focuses on 
deer and black bear, therefore the analyses only address the vehicle collisions with these species. 

5.2.2.1. Preconstruction Deer-Vehicle Collision Data 
Although deer-vehicle collisions (DVCs) were recorded from 1992—2005, procedural and 
sampling changes (described above) appeared to lead to more consistent effort and reporting 
from 2002—2005 (Figure 3).  Hence, the analyses and results below incorporate only the 2002—
2005 DVC reports (Note:  there were no MDT road kill carcass removal reports for January-May 
of 2002). 

The average annual number of reported DVCs during the 2002—2005 preconstruction years was 
90 (95% C.I. = 82, 98).  Over the total 52.6 mile study area (mile marker 6 to 58.6), this equates 
to an average of 1.7 deer killed per mile per year (95% C.I. = 1.6, 1.9).  
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1%
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OTHER(WILD)
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Figure 2: Species (“deer” includes both white-tailed and mule deer) of animal-vehicle collisions and road 
kill carcass removals from US 93 reported over 2002—2005.  Sources:  MDT, MHP and MTFWP.   
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The 2002—2005 DVC dataset was further divided to assess two specific areas of interest:  

1. The 8.7 miles (14 km) where wildlife fence (including long continuous and short wing 
fence sections) will be installed along both east and west sides of the highway (hereafter 
referred to as “double fence”);  

2. The 44.9 miles (72.3 km) outside the proposed double fence, including 3.9 miles where 
wildlife fencing is planned for only one side of the road and where wildlife fencing 
sections are less than 0.5 miles (0.8 km) in length (i.e., where short segments of “wing 
fencing” will be installed immediately adjacent to crossing structures to funnel animals to 
the passageways under the highway).  The 44.9 miles (72.3 km) includes the 11.6 mile 
(18.7 km) Ninepipes stretch where mitigation and reconstruction design has not yet been 
determined. 

The number of DVCs in each area of interest was divided by the total length of each area to 
provide a standardized response variable of DVCs per mile.  The average annual number of 
DVCs reported in 2002—2005 where double fence is proposed was 11.8 (95% C.I. = 4.6, 18.9).  
This equates to 1.4 deer killed per mile per year (95% C.I. = 0.5, 2.2; Figure 4).  The annual 
average number of DVCs outside the area where the double fence will be built was 78.3 (95% 
C.I. = 74.5, 82.0).  This equates to 1.7 deer killed per mile per year (95% C.I. = 1.7, 1.8; Figure 
4).  The overall reported DVCs in these sections do not statistically differ in the preconstruction 
period (P > 0.05).   
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Figure 3: Annual reported deer-vehicle collisions and road-killed deer carcasses removed from 
Evaro to Polson, 1992-2005.  Sources:  MDT and MHP. 
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A power analysis was applied to determine what degree of change in DVC rates would be 
statistically detectable when comparing DVC rates before and after the mitigation is installed, 
given the sample size, or number of years of DVC data, used in the comparisons.  This statistical 
test determines the probability of detecting differences, or effects, between two groups of data, if 
an effect actually occurs (Zar 1999).  This information is useful when determining appropriate 
sample sizes (e.g., number of years of post-construction DVC data) that will allow for useful 
quantitative inferences.  The larger the sample size, the more likely one will be able to detect 
smaller differences with greater precision, but the expense and effort of obtaining such larger 
samples may be prohibitive; alternatively, with small sample sizes, relevant differences between 
two sets of data may not be detected and inferences may be limited or inaccurate. 

Power analyses are conducted within a hypothesis testing framework where failing to reject the 
null hypothesis indicates that differences between two estimates were not detected.  If the null 
hypothesis is rejected, indicating that there are differences between the two samples, then the test 
supports alternative hypotheses of anticipated differences that are likely to be observed in the 
data.  Alternative a priori hypotheses may be one-sided or two-sided:  a one-sided (i.e., one-
tailed) hypothesis tests for an expected change (e.g., a reduction in reported DVCs); a two-sided 
(i.e., two-tailed) hypothesis tests for an uncertain outcome (e.g., a reduction or an increase in 
reported DVCs).  Power (i.e., the probability of correctly rejecting a false null hypothesis) and 
significance level or α (i.e., the probability with which one is willing to reject the null when it is 
in fact correct) can be controlled in these analyses.  

The preconstruction sample used in the power analyses (with the power and significance levels 
set subjectively at 0.80 and 0.05, respectively) consisted of four years of reported DVC 
observations (npre = 4).  Three power analyses were performed to determine the minimum 
detectable change in number of deer killed per mile per year given the number of years of post-
construction data obtained to be used in the before-after comparison: 

1. A one-sided hypothesis test was used to estimate the detectable decline in reported DVCs 
per mile before and after construction inside areas that will receive double fencing 
because it is expected that the wildlife fencing will reduce DVCs in these areas.   
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Figure 4: Average number of reported deer-vehicle collisions (DVCs) per mile per year for sections of US 
93 inside and outside areas planned for wildlife fencing.  Reported DVCs in the Ninepipes stretch were 
included in areas outside the wildlife fencing; mitigation for this stretch of road has not yet been 
determined.  Bars represent 95% confidence intervals around the mean. 
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2. Another one-sided test was used to estimate the detectable reduction in reported DVCs 
for the study area as a whole; this is the desired, expected effect of the mitigation efforts.  

3. For areas that will not have wildlife fencing installed, a two-sided test was used to 
estimate the detectable increase or decrease in reported DVCs per mile for areas since it 
is uncertain if a reduction or increase in reported DVCs may occur.  If deer do not adapt 
to the mitigation as desired, they may shift their ranges and cross-highway movements to 
areas without wildlife fencing, potentially increasing interactions with vehicles or DVCs 
in the unfenced areas or, of particular interest, near the ends of the fences (related to that 
potential scenario, it may be possible to test for increases in DVCs along shorter, 
localized road segments [1 km; 0.6 m] at the ends of the wildlife fencing).  It is also 
feasible that a reduction in DVCs may be observed outside the fenced areas if the 
reconstructed highway results in increased speeds and traffic volumes become a 
formidable barrier to wildlife crossing unto itself, subsequently resulting in a decrease in 
wildlife-vehicle interactions and collisions in these areas.   

Ideally an equal number of post-construction years is preferred; power analyses results are 
reported for a range of 3-5 years post-construction study (npost).  Results of these power analyses 
follow: 

1. Deer-vehicle collisions inside the areas that will have double fencing installed had high 
preconstruction year-to-year variance and therefore only large differences between the 
pre- and post-construction DVC data will be statistically detectable in these areas.  A 
241% change in kills per mile would be detectable after 3 years of post-construction 
study, while a 151% change would be detectable after 5 years (Figure 5).   

2. With significantly more miles of road where no wildlife fencing will be installed, there 
was less preconstruction variance in the annual reported DVCs outside the area that will 
have wildlife fencing such that smaller differences may be detectable in post-construction 
study (Figure 5).  Outside the area that will have double fencing, a 19% increase or 
decline in deer kills per mile would be detectable after 3 years of post-construction study, 
while a 12% increase or decline would be detectable after 5 years.  The unfenced stretch 
analyzed here includes reported DVCs from the Ninepipes section where mitigation 
measures and reconstruction design plans have not yet been determined.  The results 
relating to the fenced and unfenced sections reported above, therefore, were influenced 
by the exclusion and inclusion, respectively, of the Ninepipes data; these results will 
change if these data were shifted from the unfenced dataset and included in the fenced 
dataset.   

3. Detectable differences were relatively small across the entire study area (including fenced 
and unfenced areas and the Ninepipes stretch), with a 35% decline in DVCs detectable 
after 3 years of post-construction study, and a 22% decline after 5 years of study (Figure 
6).   
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Based on other studies assessing wildlife fencing and crossing effects on AVC rates, it is 
reasonable to expect that these estimated detectable differences will be obtainable without 
requiring inordinate number of years of post-construction data.  For example, Clevenger et al. 
(2001) reported an 80% reduction in ungulate-vehicle collisions in Banff National Park where 
extensive, continuous wildlife fencing limits wildlife access to the Trans-Canada Highway.  
Lehnert and Bissonette (1997) observed a 37% reduction in deer-vehicle collisions where deer 
were crossing a rural 2-lane highway at-grade in Utah via an intentional gap in wildlife fencing 
(i.e., a “deer crosswalk”).  While neither example is exactly comparable to the US 93 fencing 
design and placement, it would not be unreasonable to expect DVC reductions across the entire 
study area to be within range of these outcomes given that the sections of continuous fencing 
(where the greatest reductions in DVCs are expected) and unfenced gaps (with lower potential 

 
Figure 5: The minimum detectable difference in reported deer-vehicle collisions per mile inside and outside 
areas (including the Ninepipes section) that will have wildlife fencing installed, given n years of post-
construction study. 
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Figure 6: The minimum detectable difference in deer killed per mile across the entire US 93 study area 
(including the Ninepipes section) given n years of post-construction study. 
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for reductions in DVCs) could balance out to an overall reduction that could be detected in 3-5 
years of post-construction monitoring 

Locations of deer kills reported in 2002—2005 were plotted by tenths of a mile as were the 
locations of the planned wildlife fencing and crossing structures (Figure 7).  There were several 
“hotspots” of DVCs across the study area.  A “hotspot” was defined as a tenth of a mile with 
greater than 3 standard deviations more deer kills over 2002—2005 than the mean number of 
deer kills (average = 0.7 kills per 0.1 mile; standard deviation = 1.4).  Based on this definition, 
two hotspots were identified at mile markers 33.6 and 34.5; both within 0.1 mile (0.16 km) from 
where wildlife crossing structures will be installed, but wildlife fencing extending from those 
structures will not cover those specific locations.  An unmitigated hotspot occurred at mile 
marker 7.4, and several other hotspots (mile markers 37.5, 37.7-37.9, 39.8, and 45.6-45.8) 
occurred within the final section of US 93 within the Ninepipes National Wildlife Refuge on the 
Reservation which is planned for reconstruction upon the completion of a Supplemental 
Environmental Impact Statement (Figure 7).  It should be noted that DVC locations were 
reported to the tenth of a mile, and therefore may not have precise spatial locations to where the 
DVC actually occurred.  Hence, some of the peaks and DVC hotspots depicted in Figure 7 may 
not coincide precisely with the locations of the mitigation measures.   

5.2.2.2. Preconstruction Bear-Vehicle Collision Data 

Not surprisingly, black bear-vehicle collision (BVCs) and road-killed carcass reports were rarer 
than DVCs (Table 6).  Over 1995—2005, a total of 32 BVCs over the entire US 93 study area 
were reported and the mean number of BVCs per year was 2.9 (95% C.I. = 1.2, 4.7).  In 2002 
and 2003, 8 and 9 black bear mortalities due to collisions with vehicles were reported, 
respectively; these higher numbers of reports were likely a result of more focused efforts to 
document such mortalities as a part of a preconstruction black bear research study in the study 
area (McCoy 2005; see Chapter  6 for an overview of preconstruction black bear field research).  
With small sample sizes with little statistical power to detect changes, it is difficult to infer if the 
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Figure 7: Total reported deer-vehicle collisions over 2002-2005, plotted by 1/10 mile along the US 93 study 
area, with corresponding mitigation measures across the same area.  The Ninepipes section (mileposts 37-48) 
reconstruction design and mitigation measures will be determined at the conclusion of the Supplemental 
Environmental Impact Statement in mid- to late-2006.  
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relatively low numbers of reported BVCs in 2004 and 2005 are an indication of an actual 
reduction in the bear population or if this is simply indicative of a comparatively less intensive 
reporting effort compared to 2002 and 2003.   

Bear-vehicle collisions were expected to be lower in number than DVCs for several reasons.  
Primarily, there were fewer black bears than deer in the study area.  Additionally, black bear 
carcasses may be more likely to be removed from the road by people wanting to collect skulls, 
claws or hides (McCoy 2005).  Many black bear road-kills were only incidentally reported, often 
without spatially-explicit records.  Although not unique to only black bears, it may be that bears 
hit by vehicles moved away from the road before dying, and hence, were not detected and 
reported.   

Because of high variability in the BVC dataset, power analyses were not appropriate.  
Anticipating this situation, an in-depth preconstruction black bear study (McCoy 2005; see 
Chapter 6 for further details) was undertaken in order to measure BVCs and other parameters 
that, collectively, would yield the best inferences regarding bear responses to the mitigation 
when compared to data obtained using the same methods after construction.   

5.3. Habitat Connectivity:  Wildlife-Highway Crossings 
The second objective of this study is to assess how habitat connectivity may be affected by the 
wildlife fencing and crossing structures installed on US 93.  The term “habitat connectivity” 
generally refers to a mosaic of habitat patches across the landscape connected by “corridors” that 
offer favorable conditions for animals to move between individual patches to access resources 
important to survival and reproduction (e.g., water, cover, food, dispersal and mating 
opportunities).  Roads and traffic can fragment habitats and become barriers to wildlife 
movements, reducing habitat connectivity (Riley et al. 2006, Strasburg 2006, Proctor 2003, Mills 
and Conrey 2003, Forman et al. 2003, Sunquist and Sunquist 2001, Smith 1999).  Wildlife 
fencing, with the intent of limiting wildlife access to the roadway in order to reduce AVCs, may 
reduce habitat connectivity if animals do not find and use passages to move under or over the 
mitigated road.  This study addresses that specific question by monitoring deer and black bear 
movements across US 93 before the fencing and crossings are installed so that compatible post-
construction studies can measure mitigation’s effect on habitat connectivity.   

Determining animal movements across landscapes is a challenging aspect of ecological studies.  
Observer presence may alter animal behaviors, while capturing and radio-collaring animals to 

Table 6: Number of black bears reported killed annually as a result of collisions with vehicles on US 93 on the 
Flathead Indian Reservation from 1995 to 2005.  Source:  MDT, MHP, and MTFWP data records 

Year 
Bears 
Killed Year 

Bears 
Killed 

1995 1 2001 1 
1996 0 2002 8 
1997 1 2003 9 
1998 4 2004 2 
1999 2 2005 1 
2000 3 - - 
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remotely monitor their movements can be risky (i.e., animals may accidentally suffer capture 
myopathy or handling injury, handlers may also be injured).  Using relatively inexpensive VHF 
radio-collars may require many years of intensive field efforts to obtain enough locations to 
determine species use patterns relative to landscape features of interest.  Alternatively, GPS-
collars can provide thousands of location “fixes” on a single animal with little effort (beyond 
collaring and obtaining the data either via retrieving the collar, by wireless downloading of data 
from close-range or via satellite transmission) allowing researchers to understand how fine-scale 
features of the environment may influence movements; however, the cost of GPS collars may be 
prohibitive.  In the case of the US 93 evaluation efforts, GPS radio-collars were justified for the 
in-depth black bear study (McCoy 2005; see Chapter 6 for details) given that black bears are 
typically inconspicuous and field methods for sampling deer movements probably would not 
provide adequate data on bear movements given their relative abundance compared to deer.   

Radio-collar methods were considered for monitoring deer movements across US 93 but 
abandoned for several reasons.  First, there were no existing deer population estimates available 
as a reference to determine an appropriate proportion of the population to collar to capture the 
variation of movements and behaviors occurring within the larger population; a subjectively 
estimated number of GPS collars (20-40) required was not affordable given the available budget.  
Further, with no existing data on local deer population group dynamics or movements, there 
were concerns about collaring animals not representative of the larger population due to the 
gregarious nature of this species; e.g., if data from ten deer revealed that six consistently moved 
together as a group, these six animals would not be considered independent and the effective 
sample would be reduced to five if the location data were used to make inferences about the 
larger population (bears are not typically gregarious and it is usually apparent when bears are 
associated with each other, such as a female and her offspring, hence researchers can better 
control this scenario).  Lastly, although locations of deer away from the road corridor are of 
interest if addressing research questions regarding use of the surrounding landscape, the research 
question focuses on the road corridor and most of the GPS-collar location data would not be 
directly relevant to the central question regarding deer-highway crossings.   

Assuming there might be a fair amount of deer movement across US 93, it was presumed that 
methods concentrated within the road corridor would capture enough data related directly to the 
research question.  Camera or video monitoring of the 6.9 miles (11.1 km) of road corridor 
where wildlife fencing was planned was deemed too expensive and prone to theft.  Eventually, a 
novel application of animal tracking methods was selected to monitor deer-highway crossings (as 
well as bear tracks, though, as mentioned above, additional monitoring efforts were taken on to 
bolster the black bear data).   

Animal track observations provide a non-invasive alternative to documenting movements of 
animals relative to their environment (Turchin 1998).  Interpreting animal tracks can reveal the 
species of animal, gait, direction of travel, and even the approximate time that an animal moved 
across a patch of ground (Turchin 1998, Halfpenny and Biesiot 1986).  Animal tracks may be 
found opportunistically where animals traveled across loose, pliable substrates or may be 
methodically sampled at particular locations using “track beds” or “track plates” specifically 
constructed to non-invasively monitor animals moving across locations of interest.   

Track methods alone (without additional measures, such as remote-triggered cameras, to 
quantify error rates) are an imperfect methodology.  Exposure to rain and wind may erase tracks, 
previously-lain tracks may be obscured by other animals’ tracks or other roadside activities 
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(vehicles departing the roadway, precipitation runoff, and activities such as biking or horseback 
riding; Barnum 2001), and tracking media can freeze such that animals don’t leave tracks in the 
beds (Ward 1982).  Despite these recognized short-comings, tracking methods have effectively 
monitored movements of many different species relative to highways and highway crossings 
(Mata et al. 2005, Ng et al. 2004, Clevenger and Waltho 2003, Barnum 2001, Clevenger and 
Waltho 2000, Rosell et al. 1997, Foresman and Pearson 1998, Rodriguez et al. 1996, Yanes et al. 
1995, Ludwig & Bremicker 1983, Ward 1982). 

Preconstruction deer and black bear crossings (complementing the more in-depth black bear 
study) of US 93 were estimated via track observations within an array of track beds that sampled 
the areas planned for the most extensive lengths of double fencing with crossing structures.  
Track observations documented species presence and animal movements including crossing 
observations.  This sample of crossings identified from track beds was used to extrapolate across 
the area where the fencing was planned, providing an estimate of total preconstruction crossing 
rates to compare with post construction crossing data.  Additionally, track data were assessed for 
possible deer or bear avoidance of the track beds.  The remainder of this section reviews the 
methods, analyses and results of the preconstruction track bed monitoring.     

5.3.1. Track Bed Methods 
Track beds were installed along three discrete stretches of US 93 in the Evaro, Ravalli Curves, 
and Ravalli Hill areas at the southern end of the Reservation, where the three longest lengths of 
wildlife exclusion fencing with crossing structures are planned.  The following three subsections 
overview the methods for locating, constructing and maintaining the beds, and the field observer 
techniques used to record the track observations.  Extensive details about preconstruction field 
data collection methods and considerations are documented in the US 93 Field Monitoring 
Handbook created for this project (Hardy and Huijser 2005). 

5.3.1.1. Track Bed Locations 
Using track data from another study (Barnum 2001) that was collected in a manner similar to the 
approach proposed for the US 93 track bed monitoring, the number of the track beds to be placed 
in each area was determined by estimating the detectable change in track crossing rates using a 
two-sided power analysis (as it is uncertain whether crossings may increase or decrease with the 
installation of the mitigation).  Based on these results, it was determined the track beds should 
cover approximately 33% of the total length of each area to deliver an adequate sample, allowing 
an 18% or greater change in crossing rates to be statistically detectable. 

The extent and location of fencing in each area was determined from the US 93 Reconstruction 
Memorandum of Agreement (Skillings Connolly 2000); a total of 8100 m (5 miles), 7040 m (4.4 
miles), and 5200 m (3.2 miles) of wildlife fencing was originally planned for Evaro, Ravalli 
Curves, and Ravalli Hill study areas, for a total of 20,340 m (12.6 miles) of fencing across these 
three areas.  Segmenting the length of each area planned for fencing into consecutively-
numbered 100 m (109 yd) increments, a random number generator was used to draw numbers 
representing the 100 m (109 yd) sections where track beds would be placed with respect to the 
length of the area planned to be fenced.  The side of the road (east vs. west) was randomly 
determined for placing each bed.   
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Track beds were installed at these predetermined random locations within the areas planned for 
extensive contiguous fencing with wildlife passages.  Each bed was placed parallel to the road in 
the right-of-way, typically within 1.5 - 3.0 m (5 - 10 feet) of the pavement edge.  In a few cases, 
a random location of a bed fell in an area that was too steep to prevent erosion of the tracking 
material; such beds were either placed on the other side of the road (if possible), or an alternative 
site was randomly located within the same focal study area.  In 2003, 25, 20, and 17 (62 total) 
tracking beds were installed in the Evaro, Ravalli Curves and Ravalli Hill areas, respectively, 
sampling wildlife movements adjacent to the road in approximately one-third of each area.   

In 2004, the sections of road originally planned to have contiguous fencing plans were shortened 
in the Evaro and Ravalli Hill areas.  As a result, 24 track beds located outside the newly 
shortened stretches of road to be fenced in Evaro and Ravalli Hill were dropped from the 
monitoring effort, leaving 38 of the original 62 track beds within these shorter extents of planned 
wildlife fencing in the three study areas.  Three track beds in the Evaro area that fell outside the 
stretch planned for fencing were maintained and monitored to provide additional data for the 
assessment of possible track bed avoidance.  Appendix E provides a schematic of the original 
track bed placements and the reduced set of track beds that were ultimately used to derive the 
preconstruction estimate of deer and bear crossings.  Another two-sided power analysis was 
performed track data collected in 2003 for the 38 beds within the fenced area, revealing that a 
14% or greater decrease or increase in crossing rates would be statistically detectable.  These 38 
beds, plus the additional 3 beds in Evaro maintained for the track bed avoidance analysis, were 
monitored in 2003—2005; only data from the 38 beds that were located in the areas to be fenced 
were used to estimate total crossings within that area of interest.  

5.3.1.2. Track Bed Construction & Maintenance 
Each track bed consisted of 100 m x 2 m (328 ft x 6.5 ft) of filter fabric covered evenly by about 
10 cm (3.9 in) of sandy material deposited onto the fabric via a conveyor belt truck and spread 
with a grader (Figure 8).  The tracking material was a mixture of seven parts sand with one part 
1/8 inch crushed aggregate material to provide angular structure to help the sand retain crisp 
imprints (in dry conditions, sand alone tended to “roll” in from the side wall of an imprint).  
Hand rakes were used to even out the material (Figure 9) for standard coverage and to prevent 
the filter fabric from blowing in the wind, potentially deterring crossing animals or distracting 
drivers.   
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Each spring after installation, track beds were maintained to provide a consistent track bed 
surface for each data collection season.  Maintenance involved applying herbicides to vegetation 
that emerged through the filter fabric during the previous growing season.  After a few weeks for 
the vegetation to absorb the herbicide and die off completely, intensive labor to “grub” the dead 
vegetation from the track beds, followed by raking to “fluff” the sand material that had become 
compacted over the winter.  Additional sand was added as needed where erosion depleted the 
track bed material.  

5.3.1.3. Track Bed Data Collection 
Monitoring was initiated in June after the installation or maintenance of the beds was completed 
and residual tracks were raked out of the sand.  Data collection was limited seasonally by the 
freezing of the sand material during the winter months and lack of regular snowfall for snow 
track data collection; in October when the track beds froze and passing animals (especially soft 
padded animals such as bear, canine and feline species) could not leave an imprint in the solid 

 

 
Figure 8: Rolling filter fabric out while sand material is distributed by a conveyor belt (left) and 
spreading the sand with a grader (right). 

 
Figure 9: Raking the sand material to evenly cover the track bed fabric. 
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tracking media, monitoring was terminated.  Each “year” of track bed field data collection 
consisted of five months of data collection. 

Upon each track bed visit, field technicians recorded several parameters pertaining to track bed 
and environmental conditions, tracks of species and behavior.  The date of the visit was recorded 
along with the observers who visited the beds.  The amount of precipitation (in mm) that had 
accumulated since the last visit was recorded in each of the three rain gauges that were 
established in each area.  Temperature upon the visit and bed condition (e.g., snowy, frozen, 
wet, dusty, or normal) was also recorded.  The species that left each set of tracks was recorded 
(see below for more details on species identification), along with the observers’ certainty in that 
designation (certain, probable, or possible).  Photographs, with rulers for scale, were taken as 
needed of prints of special interest or uncertain designation for later analysis or confirmation.  
Behavior, interpreted from the tracks as the animal’s apparent movement pattern, was 
categorized as crossing, parallel, or simply presence (Figure 10).  Crossing behavior was 
documented when the trajectory of a set of tracks covered no more than 5m (5.4 yd) of the length 
of the bed from the entrance to exit point, differentiating these observations from animals 
traveling parallel to the road or animals that merely wandered onto the track bed with no 
interpretable direction of travel (presence).  The direction of travel relative to the highway was 
recorded (approaching or leaving) for all crossing observations.  The location where an animal 
entered and exited the bed (i.e., two measurements) was measured in meters from the most 
proximate end of the bed.  Finally, if beds were directly across US 93 from one another (which 
occurred in 5 locations across all three areas), observers recorded whether tracks were likely 
made by the same animal (i.e., same track as) on both beds: for example, where a deer may 
have crossed the highway from one bed to the other as evidenced in tracks “approaching” the 
road observed in one bed and “leaving” in the other.          

 

While the focal species were black bear and deer, tracks of all identifiable species or suites of 
species were recorded.  Several publications were consulted for track identification (Rezendez 
1999, Zielinski and Kucera 1995, Stall 1989, Forrest 1988, Halfpenny and Biesiot 1986, Murie 
1974).  Some generalizations were made in the identification of certain species in the field or for 
purposes of analyzing the data.  White-tailed deer and mule deer cannot be told apart with 
sufficient confidence (Forrest 1988, Halfpenny and Biesiot 1986), therefore these two deer 
species were recorded as “deer”.  Black bear and grizzly bear tracks are unique and can be 
recognized providing the imprints are relatively clear.   

5m

100m tracking bed
110m

2

2

3
  

Figure 10: Diagram illustrating categories of animal behavior as interpreted by tracks.  A “crossing” 
observation is depicted in scenario 1 while “parallel” movements are depicted in scenario 2.  
“Presence” was reported when only a 1-2 prints were observed.     

2
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Other species not of primary interest or whose tracks may be misidentified were lumped into 
groups of animals after field data collection to help simplify analyses.  For example, because 
domestic dog tracks may be quite similar to coyote tracks, these tracks were sometimes 
identified simply as “canine” tracks and not to species.  While mountain lion, elk, and moose 
tracks were identifiable in the field, these were infrequently observed, and lumped into one 
category (“large mammal”).  Skunks, raccoons, and rabbits were generally recorded as “medium 
mammal”, while smaller mammal tracks observed were generally reported as “small mammal”.  
Domestic animals, including cattle, horses, and domestic cats, were categorized as “other 
(domestic)”.  Observations of snake crossings, and tracks from other wild species (e.g., geese, 
insects) were categorized as “other (wild)”.  

5.3.2. Calculation of Preconstruction Crossing Estimates 
Total preconstruction crossing rates (τ̂ ) of US 93 by deer and black bears were extrapolated 
from track bed crossing observations in the three study areas (Evaro, Ravalli Curves, and Ravalli 
Hill) and across all 3 areas combined.  Assuming the randomly located track beds provided a 
representative sample of all wildlife movements through each area, it follows that the crossings 
observed in the track beds represent approximately 33% of total deer and bear highway crossings 
in the areas of inference. 

The sample unit (i) was one 100 m (109 yd) track bed, with the sample size (n) being the number 
of track beds sampled in the pre-mitigation years.  For these analyses, only data from the 38 
track beds monitored all three years in the areas to be fenced were used.  From the number of 
crossings documented on the tracking beds, the total estimated number of deer and bear 
crossings (τ̂ ) for each area of interest (Evaro, Ravalli Curves, Ravalli Hill and the whole study 
area) in each study year (2003, 2004, and 2005) were calculated using: 

 ∑
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i
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n
N

1
τ̂     Equation 1  

from Thompson (2002) where yi represents the total number of certain deer and bear crossings 
detected on each bed (i) in a given year, summed over the n 100 m (109 yd) track beds for a 
given area and year.  N represents the total number of 100 m (109 yd) segments in the length of 
the area of inference.  Roughly 33% of the study area was sampled, so N/n approximates 3.  The 
estimated total number of crossings in each highway stretch was thus 3 times the number of 
crossings detected on the n track beds.  Variance in these figures was calculated using: 
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from Thompson (2002) where )ˆ(ˆ τrav  represents the estimated variance, and s2 represents the 
sample variance in total number of deer and bear crossings of each study area.   

The number of crossings observed in each monitoring season was averaged for each area of 
interest (Evaro, Ravalli Curves, Ravalli Hill, and the whole study area) in order to run power 
analyses to determine minimum detectable differences in crossings for preconstruction and post-
construction years.  The mean number of yearly crossings (τ̂ ) is an average of estimates, and 
therefore may underestimate true variation in year-to-year crossings.  However, post-
construction measures will essentially census total crossings in the corridors.  In theory, 
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crossings should be detected in track beds inside wildlife crossings or at the ends of the fences.  
Therefore, the power analyses still yield valuable insight into how much change may be 
detectable in total wildlife crossings between pre- and post-construction years given ideal survey 
conditions.  The power analyses were for 2-sided t-tests (α=0.05, power =0.80; Zar 1999) 
because researchers envisioned two possible scenarios: wildlife crossing rates could decline due 
to disturbance or non-use of the crossing structures, or crossing rates could increase due to the 
presence of safe passage opportunities provided by the wildlife crossing structures.   

5.3.3. Preconstruction Crossing Data Results 
In 2003, 62 track beds were monitored weekly from June through October.  After the 2003 
tracking season, the wildlife fencing plans for the Evaro and Ravalli Hill areas were shortened 
(Hardy & Huijser 2004, Appendix C), reducing the total number of beds within areas to be 
fenced to 38.  An additional 3 beds in the Evaro area (EV2, EV7 and EV8) located outside the 
newly shortened wildlife fencing plans were maintained and monitored to provide additional data 
specifically for investigating potential track bed avoidance by animals. In 2004 and 2005, these 
41 track beds were checked twice a week from June through October.   

In 2003, monitoring began June 18, 2003, was discontinued for 6 weeks between August 7 and 
September 25, and was reinitiated from September 26 through October 29.  In 2003, these track 
beds were visited a total of 14 times, every 9.5 days on average, with a total of 1726 track 
observations of “certain” species designation recorded across all 62 beds.   

In 2004 and 2005, monitoring occurred more often as a result of having to visit fewer beds 
overall.  In 2004, monitoring started June 25 and ended October 16.  During that time, the track 
beds were visited a total of 33 times, every 3.47 days on average.  Observers recorded a total of 
1540 track observations of “certain” species designation across the 41 beds that season.  In 2005, 
track bed monitoring started June 13 and ended October 27, amounting to 40 visits, every 3.49 
days on average.  A total of 1,325 tracks of “certain” species were observed in the 41 beds 
monitored in 2005.   

Of the 41 track beds that were monitored across all years, only 38 track beds sampled wildlife 
crossings where mitigation will be installed and these data were used to estimate total wildlife 
crossings.  The other three beds were used to assess species presence and track distribution but 
were not included in the estimates of preconstruction crossing rates.   

Across the 41 track beds (covering a total of 4027 m [13,212 feet] due to measurement error that 
occurred during installation) sampled in the three study areas over the three years of monitoring, 
deer species were the most frequently observed tracks in the track beds along US 93, with 
medium mammals (including skunks, raccoons, and rabbits/hares) and canines (including 
domestic dogs and coyotes) as the second- and third-most observed species (Figure 11).   
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Analyses of species behavior were restricted to deer and black bear track observations classified 
as certain species designation from the same 41 track beds that were monitored over all 3 
monitoring seasons (Figure 12).  Deer crossing behavior did not show any apparent decreasing or 
increasing trend over 2003-2005, but a three-fold increase in parallel behaviors and a five-fold 
increase in presence behaviors were notable.  Black bear crossing behavior sharply decreased 
from 2003 to 2005 (a 78% decline) and no parallel behavior was documented in 2005.    
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Figure 11: Numbers of species of animal tracks observed in 2003-2005 in 41 track beds sampling a 
total of 4027 m along US 93 between Evaro and St. Ignatius, Montana.  Certainty of the species of 
observed tracks was reported as “possible,” “probable,” or “certain”.   
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5.3.3.1. Estimated Preconstruction Deer Crossings 

Preconstruction estimates of deer highway crossings were established for the areas that will 
receive wildlife fencing using 38 track beds: 11 track beds in Evaro, 20 track beds in Ravalli 
Curves, and 7 track beds in Ravalli Hill.  A total of 3748 m (2.3 miles) was sampled across all 
three areas that will receive fencing (this distance was less than the intended 3800 m due to 
measurement error; true bed length varied by ±13 m (14 yd) from the intended length (100 m).  
The sample size was therefore not an integer because the sample units were often fractional 
components of the intended sample, and nEvaro = 10.96, nRavalli Curves = 19.52, and nRavalli Hill = 7.    

All certain deer crossings were accumulated for each year (see Appendix F).  Using Equation 1 
and 2, twelve estimates of total preconstruction deer highway crossings, and the associated 
variance for each estimate, were calculated for Evaro, Ravalli Hill, Ravalli Curves, and the 
whole study area (Table 7).  The areas of inference were approximately 3.2 km (1.9 miles) for 
Evaro, 5.9 km (3.6 miles) for Ravalli Curves, and 2.1 km for Ravalli Hill, which totaled 11.2 km 
(6.9 miles) across all three areas. 
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Figure 12: Numbers of deer (top) and black bear (bottom) behaviors interpreted from track observations recorded 
in 2003-2005 in 41 track beds sampling a total of 4027 m along US 93 between Evaro and St. Ignatius, Montana. 
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Ravalli Hill, the shortest section, had a lower estimate of total deer crossings than the other two 
areas.  Ravalli Curves, the longest section, had the highest number of deer crossings (Figure 13).  
Combining all observed deer crossings observed across the three focal study areas, total 
estimated number of deer crossings did not change from year to year (P>0.1; Figure 14).   

 

 

Table 7: Preconstruction estimated total deer and bear crossings (τ̂ ) and associated variance 
( )ˆ(ˆ τrav ) for areas of interest and years of study along the US 93 corridor. 

DEER BEAR 
AREA YEAR

τ̂  )ˆ(ˆ τrav  τ̂  )ˆ(ˆ τrav  
2003 516 10710 24 122 
2004 603 5935 24 57 EVARO   

(n = 10.96) 
2005 372 4189 3 7 
2003 1227 72709 66 231 
2004 657 10729 135 1756 

RAVALLI 
CURVES 

(n = 19.52) 2005 1035 52100 21 74 
2003 189 1709 39 444 
2004 261 8177 6 28 

RAVALLI 
HILL  

(n = 7.00) 2005 336 15165 9 29 
2003 1932 88991 129 733 
2004 1521 26842 165 1983 

WHOLE 
AREA  

(n = 37.48) 2005 1743 70251 33 107 
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Figure 13: Estimated total deer (left) and bear (right) crossings (τ̂ ) in each focal study area in each 
year, based on crossings interpreted from tracks observed in 38 tracking beds.  Error bars represent 
95% confidence intervals.   
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Power analyses indicated the ability to detect a 153% change in deer crossings after 3 years of 
post-construction study across the three study areas combined (Figure 15).  Given 5 years of 
post-construction study, a change of 60% could be detected in deer crossings.  This power 
analysis was performed using a two-sided hypothesis, assuming that wildlife crossings could 
increase due to the presence of safe crossing structures, or they could decrease if deer do not 
adapt and learn to use the crossing structures.   

5.3.3.2. Estimated Preconstruction Bear Crossings 
Preconstruction estimates bear highway crossings were established for the areas that will receive 
wildlife fencing using 38 track beds: 11 track beds in Evaro, 20 track beds in Ravalli Curves, and 
7 track beds in Ravalli Hill.  A total of 3748 m (2.3 miles) was sampled across all three areas that 
will receive fencing (this distance was less than the intended 3800 m due to measurement error; 
true bed length varied by ±13 m (14 yd) from the intended length (100 m).  The sample size was 
therefore not an integer because the sample units were often fractional components of the 
intended sample, and nEvaro = 10.96, nRavalli Curves = 19.52, and nRavalli Hill = 7.    
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Figure 14: Estimated total deer (left) and bear (right) crossings (τ̂ ) for the three focal study areas combined 
in each year, based on crossings interpreted from tracks observed in 38 tracking beds.  Error bars represent 
95% confidence intervals. 
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Figure 15: Power analysis of the minimum percent difference statistically detectable in estimated total 
crossings (τ̂ ) for deer (left) and bear (right) in the three study areas combined given t years of post-
construction survey. 
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All certain bear crossings were accumulated for each year (see Appendix F).  Using Equation 1 
and 2, twelve estimates of total preconstruction bear highway crossings, and the associated 
variance for each estimate, were calculated for Evaro, Ravalli Hill, Ravalli Curves, and the 
whole study area (Table 7).  The areas of inference were >3.2 km (1.9 miles) for Evaro, >5.9 km 
(3.6 miles) for Ravalli Curves, and >2.1 km (1.3 miles) for Ravalli Hill, which totaled 11.2 km 
(6.9 miles) across all three areas.   

The total number of bear crossings showed high variation both within and between years and 
areas (Figure 13).  Ravalli Hill generally had a very low number of bear crossings.  The number 
of bear crossings in Evaro and Ravalli Curves in 2005 was lower than in 2003 and 2004.  
Combining all observed bear crossings across the three focal study areas, the total number of 
black bear crossings were significantly lower in 2005 than in 2003 or 2004 (P<0.01; Figure 14).  

Power analyses indicated the ability to detect an 807% change in bear crossings after 3 years of 
post-construction study across the three study areas combined (Figure 15).  Given 5 years of 
post-construction study, a change of 318% could be detected in bear crossings.  This was using a 
two-sided hypothesis, assuming that wildlife crossings could increase due to the presence of safe 
crossing structures, or they could decrease if bear do not adapt and learn to use the crossing 
structures.  These figures were not unexpected given the relatively low population of bear 
(compared to deer populations) and high variability in datasets with smaller sample sizes; 
anticipating such an outcome justified the in-depth black bear study (see Chapter 6 for details).   

5.3.4. Assessment of Track Bed Avoidance Behaviors  
A central assumption in using track beds to non-invasively measure animal movements is that 
animals do not respond to the presence of the track bed itself.  If animals avoid the track bed 
(e.g., move around the bed rather than crossing the bed) or are attracted to the track bed (e.g., for 
minerals or salt in the tracking medium) track observations may not be representative of actual 
animal presence and behaviors.  To address this assumption, the distribution of points where 
animals first entered the track bed, measured in meters from the nearest end of the track bed, 
were analyzed for deer and bear crossing observations.  Uniform distributions of entrance points 
across the lengths of the beds would suggest animals crossed the track beds as they were 
encountered, indicating the sampling was unbiased.  Non-uniform distributions may imply 
animals changed their movement behaviors in response to the presence of the track bed, 
potentially biasing the sample.   

There was no reason to expect animals to be attracted to the track beds: to the knowledge of the 
researchers, the locally-obtained sand and aggregate mixture used in the beds did not contain 
mineral supplements or salt.  If animals were avoiding the track beds, researchers hypothesized 
that the observed distribution of entry points would assume one of two forms (Figure 16): a 
preponderance of tracks at the ends of the beds with relatively fewer tracks in the middle of the 
beds, or more tracks in the middle of the beds with relatively fewer tracks at the ends.  The first 
outcome might be observed if animals approaching the center of the bed moved along the edge 
of the bed until crossing the bed near the end where the animal might perceive normally 
vegetated groundcover.  The second possible outcome might be observed if animals approaching 
the bed at the ends walked around the ends of the bed rather than across it, whereas animals 
approaching the center of the bed continued across it.   
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If the distribution of entry points on the bed was not uniform due to possible avoidance 
behaviors, it was expected to be symmetrical around the middle of the bed relative to the two 
ends of the beds (Figure 16), and that a positive or negative relationship between numbers of 
animal crossings and proximity to the ends of the beds could be detected.  Because track beds 
were not of equal lengths (due to measurement error and because some beds were placed 
adjacent to one another measuring ~200m), points were standardized by dividing entrance points 
by the total length of the bed.  Thus, the explanatory variable was established as the proportional 
distance from an end of a bed, with 0.50 representing the exact middle of the bed, and 0.00 
representing the two ends of the bed.  The response variable was the number of crossings 
documented at a given proportional distance from the end of the bed.  To reduce the effect of 
small sample size, each entrance point was assigned to one of 25 bins of 0.02 units each, scaled 
from 0.00-0.02 (the two ends of the bed) to 0.48-0.50 (the middle of the bed), depending on 
where the entrance point fell along this continuum.  Linear regression was used to examine the 
relationship of entrance points along the length of the beds by testing 1) whether the slope of the 
regression line significantly differed from zero, 2) whether the slope was positive or negative, 
and 3) whether the relationship between the number of tracks and the proportional distance from 
the track bed ends was linear or non-linear. 

Data were used from the subset of 62 track beds that were not near structures that may have 
directed or otherwise influenced animal movement (e.g., guard rails, tall fences, or driveways 
present on the side of the highway with the track bed).  A total of 45 track beds were used in 
these analyses, four of which were only monitored in the year 2003.  Observations of deer and 
bear crossings were analyzed separately as it is possible these species may respond differently to 
track beds.  Track bed entrance points of animals approaching versus leaving the highway were 
analyzed separately because animals leaving the highway may respond differently than those 
approaching the road, being influenced by traffic or the different visual perspective looking 
down on the track bed from the road versus looking up at the road from the sloped shoulder of 
the right-of-way.  
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Figure 16: Hypothesized frequency distribution patterns of tracks in track beds given two potential 
outcomes if animals were avoiding track beds compared to the uniform distribution expected if animals had 
no reaction and crossed wherever they first encountered the bed.   
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5.3.4.1. Track Bed Avoidance Assessment Results 

After censoring observations from track beds with guard rails, fences, or driveways, and using 
only certain deer crossing observations from the other track beds, the dataset used to evaluate 
whether deer altered their movements due to the presence of the track beds included 857 and 655 
observations of deer approaching and leaving the highway, respectively.  The relationship of 
entrance points to track bed ends did not differ for deer approaching versus leaving the highway 
(P > 0.1), but there were significantly fewer tracks of deer leaving the highway than entering it 
(P < 0.05).  Because the slopes of the regression lines for deer approaching and leaving the 
highway did not differ, these data were combined for the remaining analyses (n = 1,512).  
Regression analyses indicated that deer crossed closer to the ends of the beds more often than the 
middle of the track bed (Figure 17).  The slope of this regression line was negative and 
significantly different from zero (-44.31; 95% CI = -56.42, -32.20; P < 0.001), and the regression 
line explained 62% of the variation in the data (R2 = 0.62).   

 

After censoring bear crossing observations from track beds with guard rails, fences, or driveways 
and using only “certain” bear crossings, the dataset for assessing black bear responses to track 
beds included 66 and 77 tracks of black bears leaving and approaching the highway, 
respectively.  This relatively low sample size affected the numbers of observations categorized 
into each bin (0.02), resulting in a rougher-scale picture of bear behavior.  Black bears 
approaching and leaving the highway showed similar distributions of entrance points relative to 
the ends of the track beds, although inference was difficult due to the small sample size, and 
behaviors were combined across the three monitoring seasons for the analyses (n = 143).   
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Figure 17:  Frequency of deer track bed entrance points relative to the ends of the track beds. 
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Regression results indicated that the distribution of entry points for black bear crossing 
observations tended toward uniformity relative to the length and ends of the track bed (Figure 
18).  Although the slope of this regression line was significantly different from zero (P < 0.05) 
the strength of the relationship between frequency of crossing closer to the end of the bed was 
less apparent as the slope was much shallower, at -7.15 (95% C.I. = -13.83, -0.48).  Compared to 
the deer analyses, much less of the variation in track frequency relative to distance to end was 
explained (R2 = 0.16).   

These results indicate that deer may be exhibiting some track bed avoidance behaviors when 
confronted with a “free standing” track bed (i.e., a track bed with no features to funnel 
movements across the bed and animals could chose to walk around the bed).  Black bear do not 
seem to be responding to the same degree that deer were, though it is possible that some bear 
track bed avoidance may be occurring as well.  By understanding that there may have been some 
avoidance of the beds implies that the estimated preconstruction crossing estimates, especially in 
the case of deer, may be underestimating the total cross-highway movements.   

5.4. Pellet Group Transects 
Pellet transects have been used to estimate animal population densities in many biomes (Murray 
et al. 2002, Krebs et al. 2001, Massei et al. 1998, Harestad and Bunnell 1987, Freddy and 
Bowden 1983, Neff 1968).  Pellet group counts are especially useful to estimate ungulate 
population abundance, and the utility of this index has been thoroughly reviewed (Mandujano 
and Gallina 1995, White and Eberhardt 1980, McConnell and Smith 1970, Neff 1968, Eberhardt 
and Van Etten 1956).   

Pellet group surveys are easier to design and implement than methods that directly measure deer 
density, such as flight surveys or mark-recapture efforts.  However, these advantages are offset 
by multiple assumptions and concerns.  Pellet group counts are correlated with deer abundance, 
but are not directly estimates of deer abundance: thus, researchers must assume a constant 
functional relationship between number of pellet groups and deer density (Lancia et al. 1996).  It 
follows that several sources of process and sampling variation affect the precision and accuracy 
of results.   

Sources of process variation include: 

• Changing deer populations (generally the variable of interest); 
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Figure 18: Frequency of black bear track bed entrance points relative to track bed ends. 
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• Differential deposition of pellets by habitat, behavior and diet (White and Eberhardt 
1980, Neff 1968); 

• Yearly variation in climate and its effect on decomposition rates (Harestead and Bunnell 
1987); and 

• Changes in vegetative cover affecting pellet appearance (i.e., plant growth changes along 
a transect from year to year due to succession or disturbance, resulting in pellets 
receiving different exposure to elements; Harestead and Bunnell 1987, Freddy and 
Bowden 1983).   

Sources of sampling variation include: 

• Transects run in slightly different places (i.e., a different portion of the landscape was 
sampled one year to the next); 

• Observer fatigue: often related to size of plot, with smaller plots having fewer overlooked 
pellets (Neff 1968); 

• Difficulty in differentiating pellet age (Freddy and Bowden 1983); 
• Complete census of groups within a plot (i.e., no groups are missed; Eberhardt and Van 

Etten 1956); and 
• Large sampling variances due to the contagious distribution of pellet groups (i.e., pellet 

groups tend to be clumped in areas where animals may rest, ruminate and defecate more 
often than in other places; Mandujano and Gallina 1995, Freddy and Bowden 1983, 
White and Eberhardt 1980, McConnell and Smith 1970).  

Because there were no estimates available of relative changes in the deer population size on the 
Flathead Reservation (Dale Becker, CSKT Biologist, pers. comm.), pellet group count transects 
were implemented to provide a time- and cost-effective index to deer abundance in the study 
areas.  Pellet group indices were used to determine whether deer population levels dramatically 
changed between years, and whether this fluctuation explained some of the year-to-year variation 
in the associated track bed data and reported DVCs.  Black bear population estimates are 
discussed in the summary of research on preconstruction black bear movements and genetics 
(Chapter  6).   

5.4.1. Pellet Group Transect Field Methods 
Surveys for deer pellet groups occurred in 2004 and 2005 in the three focal study areas to ensure 
the closest possible relationship between deer crossing rate estimates and potential changes in 
deer population size.  Transect starting points were linked to a subset of the randomly-placed 
tracking beds in order to provide a representative sample of transects on the landscape.  A 
sample size of 25 transects was based on a power analysis using data from the first 15 transects 
in the three study areas, which indicated that with 25 transects, changes in the deer population 
greater than 17% should be detectable.  While a larger sample size was preferable, this was what 
was feasible given the budget provided. 

Transects were 500 meters long, and consisted of 10 plots 1 meter wide by 50 meters long.  
Transects were located at the center of a tracking bed and perpendicular to the road.  Compass 
bearings were set at the start point and maintained throughout the transect, which was measured 
using a measuring tape.  If there were obstacles in the path, the original trajectory was 
maintained with as little deviation from the initial bearing as possible.  Permission to access 
private lands was obtained as needed.   
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The ten 1x50 m plots were run by placing a meter stick’s 0.5 meter mark directly over the 
measuring tape, creating a 1-meter wide zone.  Every pellet group that fell entirely or partly 
within this zone was counted.  A deer pellet group was defined as having at least 10 individual 
pellets in a cluster.  Each pellet group was classified as “fresh black (shiny)”, “old black (not 
shiny)” or “old brown” (for analyses, “fresh black” and “old black” pellet groups were combined 
for each transect and “old brown” pellet groups were excluded, as these may be from the 
previous season and may not relate to the deer population of the year in which the survey took 
place).    

At each plot, primary and secondary habitats were recorded generally using the following 
categories:  open grass, open scrub, coniferous forest, deciduous forest, wetland/riparian, 
residential, agricultural, pasture.  The percent of that section that was impassible was recorded 
(i.e., where it was impossible to census for pellet groups due to thick brush or deadfall).  

5.4.2. Pellet Group Data Analyses 
Statistical analysis of pellet group data was thoroughly reviewed.  The challenges of pellet group 
analysis include the following factors: 1) pellet group data are count data and therefore 
represented as integers; 2) pellet groups generally occur at low frequency with high variation; 
and 3) pellet groups are often distributed contagiously (i.e. clumped or non-randomly) across the 
landscape (White and Eberhardt 1980, McConnell and Smith 1970).  With these non-normally 
distributed data, options for analysis included 1) transformation to stabilize variance; and 2) use 
of an alternate statistical distribution to fit the data.  Transformation of the data was not the best 
option in this case, as it assumes the amount of dispersion in pellet groups remains constant 
across areas and years (White and Eberhardt 1980).  Therefore, the use of another statistical 
distribution was deemed more appropriate.  It has been shown that the negative binomial 
distribution is more flexible than the Poisson (another distribution often used for count data) and 
best fits pellet group count data in a variety of situations (Mandujano and Gallina 1995, Freddy 
and Bowden 1983, White and Eberhardt 1980, McConnell and Smith 1970).  This distribution is 
described by two parameters: m and k as below: 
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==   Equation 3 

The parameter m represents the mean, while k is a measure of the contagion (White and 
Eberhardt 1980).  In cases where pellet groups approach random distribution, k grows large (>8), 
and the distribution approaches a Poisson; where pellet groups are more over-dispersed 
(clumped), k approaches 0 (White and Eberhardt 1980, McConnell and Smith 1970). 

Using this equation and the “glm.nb” function in program R 2.2.1 (The R Core Development 
Team 2005), the mean (m) and dispersion (k) parameters and their associated variance were 
estimated for the entire pellet group dataset.  A suite of generalized linear models was built using 
the negative binomial distribution to test whether there were differences in pellet group counts 
between area and/or year of the study.   

The functional form of the relationship of the data to the negative binomial distribution was 
tested using a likelihood ratio test of the model log-likelihoods (White and Eberhardt 1980).  The 
likelihood ratio statistic was computed as: 

      -2(LL(Poisson) – LL(Negative Binomial))   Equation 4 
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This equation tested the null hypothesis that the mean and variance were equal (indicative of a 
Poisson distribution) against the alternative hypothesis that the variance exceeded the mean (as 
in the negative binomial distribution).  The null hypothesis was tested at α = 0.05, with the 
critical value of the χ2 distribution corresponding to this significance level with 1 degree of 
freedom.   

5.4.3. Preconstruction Pellet Group Data Summary 
Three transects were run in Ravalli Hill, and eleven transects were run in Evaro in 2004 and 
2005.   Eleven transects were run in Ravalli Curves in 2004, and twelve were run in 2005.  A 
total of 79 pellet groups were documented in Evaro, 25 pellet groups were documented in Ravalli 
Curves, and no pellet groups were documented in Ravalli Hill in 2004.  A total of 60 pellet 
groups were documented in Evaro, 16 pellet groups were documented in Ravalli Curves, and 2 
pellet groups were documented in Ravalli Hill in 2005.  Pellet groups for Ravalli Hill were not 
considered in any of the following analyses due to their low sample size, and because no pellets 
were found there in 2004.  Pellet groups were not evenly distributed across transects, with some 
transects counting many more pellet groups than others (Table 8).   

The negative binomial equation fit the data better than the Poisson distribution.  Hypothesis tests 
using all data were run using Equation 4, and, the pellet group count data were inadequately 
described by the Poisson compared to the negative binomial distribution.  

The dispersion parameter (k) was similarly low across areas, attesting to high clumping of pellet 
groups across the landscape, and the relative constancy of clumping across areas and years.  The 
similarity in k between areas allowed multiple comparisons between pellet groupings using 4 
model structures developed in the “glm.nb” framework in program R 2.2.1 (See Table 9) (The R 
Core Development Team 2005).  The parameter k was not considered in these comparisons, 
allowing the following: 

Table 8: Number of pellet groups found in each area and year, summarized over the total number of 
transects run. 

 
OVERALL 

FREQUENCY EVARO RAVALLI CURVES 

# Groups 
Found per 
Transect 

2004 
(n=25) 

2005 
(n = 26) 

2004 
(n = 11) 

2005 
(n = 11) 

2004 
(n = 11) 

2005 
(n = 12) 

0 9 10 2 2 4 6 
1 3 2 0 0 3 2 
2 1 3 1 1 0 1 
3 0 2 0 1 0 1 
4 3 3 0 2 3 1 
5 3 1 3 0 0 1 
6 1 0 1 0 0 0 
7 0 2 0 2 0 0 
8 0 1 0 7 0 0 
9 0 0 0 0 0 0 

10 1 0 0 0 1 0 
11+ 4 2 4 2 0 0 

TOTAL 104 78 79 60 25 16 
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• One mean pellet group (same # pellet groups regardless of area or year; 1 estimated 
parameter);  

• Mean pellet group by area (2 estimated parameters: EV and RC); 
• Mean pellet group by year (2 estimated parameters); and 
• Mean pellet group by area and year (4 estimated parameters). 

 

The mean number of pellet groups per plot differed significantly (P<0.01) between areas (Evaro 
and Ravalli Curves).  In both years, Evaro had higher mean number of pellet groups per transect 
than Ravalli Curves (Figure 19).  Although there appeared to be a decrease in the mean number 
of pellet groups per plot in both areas from 2004 to 2005, these differences were not statistically 
significant between years (P > 0.1).     

Information theoretic methods and Akaike’s Information Criterion (AIC) with small sample size 
adjustment (AICc) were applied to determine model support (Burnham and Anderson 1998).  
Two models were nearly equally supported: the model estimating pellet group count by area and 
the model estimating pellet group count by area and year (AICc = 217.9 and 218.4, respectively).  
The other two models, (those estimating just one mean pellet group across all areas and years, 
and the model estimating mean group counts by year only), received AICc values greater than 9 
AIC points higher, indicating very low support for these models relative to the other models 
(Burnham and Anderson 1998).   

Table 9: Mean number of pellet groups per plot per area per year (m) and the over-dispersion coefficient (k) 
in each area sampled in each year with their associated error rates as represented by the negative binomial 
distribution. 

 EVARO 2004 RAVALLI 
CURVES 2004 EVARO 2005 RAVALLI 

CURVES 2005 
m 7.18 2.27 5.46 1.33 

Error 2.14 0.95 1.49 0.57 
k 1.19 0.68 1.57 0.70 

Error 0.67 0.44 0.99 0.56 
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Figure 19: Mean number of pellet groups per plot at each site and year.  Bars represent 1 standard 
deviation from the mean given the negative binomial distribution. 
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These results indicated that area was a strong explanatory covariate regarding the mean number 
of pellet groups observed, and that year added some explanatory power to the function.  A closer 
look at the coefficients on the regression covariates revealed that area was significant at P<0.001, 
while year was only marginally significant at P = 0.26 in this equation.   

The pellet transect results indicate that the deer population may be declining which may affect 
observations deer crossing and collisions with vehicles.  However, because these results are 
based on only two seasons of transect observations, these outcomes can not be considered 
conclusive.  Ultimately, the trends should become more apparent as these methods are repeated 
annually throughout the duration of the study.   

5.5. Preconstruction Photo-Monitoring Summary 
Early in the piloting of field methods for this study, two 35mm cameras equipped with passive 
infrared motion and heat sensing triggers were placed under the Montana Rail Link Bridge in the 
Evaro area (milepost 10.0) to obtain an indication of what species were present in the area and 
were traveling under US 93.  One camera was located south of the railroad and west of US 93 
while the other camera was placed north of the railroad and east of US 93.  Cameras were placed 
facing the bridge to photograph movements under the bridge; however, to avoid burning film on 
passing trains, the tracks were not included in the field of view of either camera.  Thus, the photo 
monitoring data did not completely “census” all movements under the bridge. 

Cameras were in place between August 24, 2002 to December 9, 2002 and again from May 20, 
2003 to June 4, 2003, and were checked regularly to change film and batteries.  A total of 320 
photos were taken of 5 different animal species, with humans making up the most-photographed 
species followed by deer, domestic cats, black bears and domestic dogs (Table 10).  Seven of the 
photos of humans also contained at least one domestic dog in accompaniment.  These were the 
only photos that captured more than one species in the same event.  The separate listings for 
domestic dogs (2 photos, 3 animals) were dogs without human presence.  Groups of deer were 
often photographed.  As many as 3 deer were photographed together, generally a doe with two 
fawns in accompaniment.   

Most photographs were printed with the date and time they were taken, although there were 
several camera malfunctions where date and/or time were not recorded.  In total, of the 320 
photos taken, 217 photographs were printed only with the date and 287 photographs were printed 
only with the time of day.  For the focal species, deer and black bear, researchers plotted the time 
of day with the number of pictures taken at that time (Figure 20).  Deer activity was highest after 
5pm, and movement continued at a relatively high level until about 8am (15 hours; 76 photos).  
Very few photographs were taken between 8am and 5pm (9 hours; 8 photos).  Researchers could 
make few conclusions from black bear photo data because only 7 photos had time of day 
documented.  Of these 7 photos, only 1 occurred during daylight hours.  
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5.6. Traffic Monitoring 
Traffic levels can affect animal-vehicle collisions and animal-highway crossings.  Traffic counts 
were collected to assess how changes in traffic volumes may correspond to changes in crossings 
and mortalities.  While MDT collects traffic volume data from an inductive loop counter north of 
Arlee (between the Evaro and Ravalli Curves study site), WTI researchers used pneumatic tube 
road counters (Trax I Traffic Counter/Classifier, Jamar Technologies Inc., Horsham, PA) to 
collect data within the Evaro and Ravalli Curves areas.     

Table 10: Species and numbers of animals documented in photos taken from two remote-triggered 
cameras placed under the Montana Rail Link Bridge near Evaro, Montana from August 24 to 
December 9, 2002 and May 20 to June 4, 2003. 

Species 
Count 

of 
Photos 

Count of 
Animals 

Black Bear 9 9
Cat 29 29
Deer (unknown sp) 2 2
Deer (white-tailed) 99 150
Dog 2 3
Humans 161 216
Train 3 NA
Unknown/Not Animal 15 NA
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Figure 20: Number of black bear and deer photo events recorded at different times throughout a day 
(rounded to ½ hour) by two remote-triggered cameras located at the Montana Rail Link bridge near 
Evaro, Montana from August 24 to December 9, 2002 and May 20 to June 4, 2003. 
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5.6.1. Preconstruction Traffic Data Summary 
Traffic counts were monitored from May 22 to July 29, on August 10, and again from August 22 
to October 21 in 2003, for a total of 123 days of traffic count collection.  Traffic counts were 
monitored during July 1 and 2, July 9 to 16, and again from August 12 to September 9 in 2004, 
for a total of 39 days of traffic count collection.  Traffic counts were collected from May 12 to 
19, July 1 and 2, and July 13 to 28 in 2005, for a total of 26 days of traffic count collection.    

Traffic counts increased from year to year (Figure 21).  Mean traffic levels were significantly 
heavier in 2005 than 2004 (P<0.05, t = 7.63) and traffic was heavier in 2004 than 2003 (P<0.05, 
t = 3.65).  Due to difficulties in maintaining functional tubes, traffic in 2005 was mainly assessed 
in July, which could have biased the mean traffic volume high.  However, the July average for 
2005 was 5,168 and the July average for 2004 was 4,894.  Therefore, unless there was a 
malfunction in the data readers, it seems that traffic volume increased in 2005.   

Traffic counts were collected hourly, but deer and bear tracks were only counted on 3-6 day 
intervals.  Tracks documented occurred at an indeterminate time before beds were checked, so 
the total daily traffic counts were averaged for the interval between track bed checks (Figure 21).   

5.6.1.1. Deer Crossings & Traffic Volume 
Deer crossing data from track beds monitored June through October of 2003—2005 (n = 41) 
were used in this analysis.  Although the season-long mean number of deer crossings per 100m 
(109 yd) track bed did not differ between years (Figure 21; P > 0.1), the average number of 
tracks documented per track bed visit was higher in 2003 (25.59) than in 2004 (17.82) or 2005 
(15.95).  Visits to the track beds occurred less frequently in 2003 (6.33 days between visits) 
compared to an average of 3.47 and 3.49 days between visits during 2004 and 2005.  With 
roughly twice (1.82) as much time for tracks to accumulate, it was necessary to adjust the 2003 
data to consistently compare average traffic volumes to average number of crossings observed 
over a similar interval of days between all years.  Therefore, a correction factor of 0.549 was 
used to convert the 2003 deer crossing data to make them compatible with the 2004 and 2005 
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Figure 21: Average daily traffic on US 93 July-October 2003 and 2004 and July 2005 using WTI 
traffic counters (left) and mean deer crossings per 100m of US 93 highway estimated in 2003, 2004 
and 2005.   
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data.  This correction factor resulted in an average of 16.25 tracks/visit across the study area in 
2003 which corresponded with the number of tracks/visit throughout the study area in 2004 and 
2005 (17.82 and 15.95, respectively).     

The relationship between deer crossings observed in the track beds and traffic volume was 
assessed using the average daily traffic volume over the number of days between track bed visits.  
For example, if track beds were checked on July 1, 2004 and July 4, 2004, the average traffic 
daily traffic volume for July 2, 2004 through July 4, 2004 was compared to the average number 
of observed crossings across all beds.  To enhance interpretability of regression coefficients, the 
traffic volume data were scaled by dividing by 100.   

Three relationships between the number of deer crossings and traffic volume were examined.  
Results from a linear regression model indicated that the variance was non-normally distributed 
and that there was a curvilinear pattern in residuals.  Natural logarithms and square-root 
transforms of the traffic covariate resulted in slight model improvement.  Using the natural-
logarithm transform of traffic volume, the traffic covariate reached significance (P=0.05; Table 
11) and had a negative slope relating traffic volume to the number of deer crossings.  Thus, there 
may be a slightly negative relationship between traffic volume and deer crossings, with fewer 
crossings occurring in conjunction with higher traffic volumes. 

Traffic peaks and lulls followed a predictable pattern (Figure 22).  Traffic volumes were highest 
during the daylight hours and lowest in the late night and early morning.  However, photo 
monitoring of cross-highway movements under the Montana Rail Link bridge near Evaro 
revealed that deer showed a pattern of crossing in the early mornings and late evenings, generally 
the reverse of the traffic patterns (Figure 22).  The 07:00AM hour showed the highest potential 
for deer-vehicle conflicts, as deer crossings reached a peak as morning traffic increased.   

Table 11: Linear regression results relating traffic volume and deer crossings observed in track beds on 
US 93.  The negative ß estimates represent the decrease in crossings with increasing traffic volume 
(scaled by traffic volume/100) and is presented with a 95% confidence intervals (LCI and UCI) and 
associated P-values.   

Covariate β Estimate 95% LCI 95% UCI P-Value 
Traffic/100 -0.51 -1.04 0.02 0.07 
Log(Traffic) -35.38 -68.54 -2.22 0.05 
√(Traffic/100) -8.61 -17.07 -0.15 0.06 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Field Study 

Western Transportation Institute  Page 61 

Researchers also monitored the daily fluctuations in traffic across the years and seasons on a 
larger scale.  For each day track beds were checked, and an estimate of deer crossings were 
made, the previous days’ traffic volumes were averaged and the results compared (Figure 23).  
The results indicated that periods with lower traffic volumes may have higher crossing rates, 
although results were not conclusive.   
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Figure 22: Average hourly traffic volume recorded via WTI traffic counters located on US 93 
between Evaro and Ravalli Hill between June-October in 2003 and 2004, and in July 2005, plotted 
with  hourly deer crossings from photo data. 
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Figure 23: The average traffic volume in the 2-7 days before the given date, and the number of deer 
crossings (corrected) that were recorded in track beds.   
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5.6.1.2. Bear Crossings & Traffic Volume  

Black bear crossings as interpreted by tracks in track beds were recorded on the same days, and 
compared to the traffic volume data using the same methodology as deer crossings.  Significantly 
fewer bear crossings were documented in 2005 than in 2004 or 2003 (P<0.01; Figure 24).  On 
average, there were 3.55, 2.64, and 0.43 black bear tracks per visit to the track beds in 2003, 
2004 and 2005.  Like with the deer data, we applied a correction factor of 0.549 to the 2003 data 
because beds time between monitoring sessions in 2003 was approximately double that of the 
time between monitoring sessions in 2004 and 2005, and correspondingly, accumulated more 
tracks.   

As with deer data, three forms of traffic volume were used in linear regression with the number 
of bear crossings: a linear relationship, a square-root transform on traffic, and a loge transform on 
traffic (Table 12).  Researchers found a marginal decrease in crossings with the loge of traffic (P 
= 0.1), the best-performing model.  There was not enough bear crossing data from photo 
monitoring to determine the activity patterns of bears regarding the highway, but McCoy (2005) 
found that GPS collared bears had the highest highway crossing rates between 21:00 and 05:00 
(see Chapter  6 for a summary of McCoy 2005).   
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Figure 24: Average number of black bear crossings per 100m observed in track beds (n=41) located 
parallel to US 93 between Evaro and Ravalli Hill from June to October of 2003, 2004, and 2005. 

 

Table 12: Linear regression results relating traffic volume and bear crossings observed in track beds 
on US 93.  The negative ß represents a decrease in crossings with increasing traffic volume (scaled by 
traffic volume/100), and is presented with a 95% lower and upper confidence interval (LCI and UCI) 
and associated P-values.  

Covariate β Estimate 95% LCI 95% UCI P-Value 
Traffic/100 -0.07 -0.15 0.02 0.14 
Log(Traffic) -4.57 -9.78 0.65 0.1 
√(Traffic/100) -1.11 -2.43 0.22 0.12 
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5.7. Synthesis of Preconstruction Field Data Results 
Several methods were applied to establish the preconstruction baseline data for deer and black 
bear behavioral and population ecology in the US 93 highway corridor.  The documentation of 
quantity and location of AVCs indexed wildlife population densities, movement and activity 
patterns, and how these factors interacted with traffic activity patterns and volume.  Track bed 
data estimated wildlife movements within the road verge, and also served as an index for wildlife 
population density and road-centric behavior patterns.  Pellet group data indexed local deer 
population density, although deer behavior and habitat selection were determined to affect pellet 
group deposition.  Photographic monitoring established a detailed view of daily patterns of 
activity in deer and bear, directly recording wildlife behavior during road crossings.   

Comparing the multiple indices for the preconstruction years (Table 13) provides a holistic view 
of roadside ecology in the preconstruction years.  Years with more pellets may indicate more 
deer in an area, which may result in more AVCs and more deer tracks across highways.  In Evaro 
and Ravalli Hill, the indices are in agreement: more AVCs and more tracks occurred in the years 
when there were more pellets.  However, the indices did not agree in Ravalli Curves, with fewer 
pellet groups counted but more AVCs and tracks in 2005 than in 2004.   

This example demonstrates the importance of drawing inference from multiple indices.  Indices 
are useful because they are inexpensive and easy to run, but they naturally contain more variance 
than the more-expensive population estimators: indices measure something correlated with 
animal abundance rather than measuring animal abundance directly (Lancia et al. 1996).   

The main ecological factors of interest in this evaluation related to the population and behavioral 
ecology of deer and black bear in the US 93 corridor.  Specifically, these factors included 1) 
population densities of deer and bear proximate to US 93, 2) how deer and bear moved across 
US 93 prior to reconstruction, and 3) how population densities and movements interacted with 
traffic patterns, resulting in AVCs prior to reconstruction.  Methods to quantify these factors will 
be repeated, with some necessary changes, after the highway is constructed to understand how 
highway crossings and AVCs will change (see Chapter 7 for post-construction monitoring plan 
recommendations). 

Table 13: Comparison of deer-vehicle collisions, crossings, and pellet counts observed in the three 
study areas in 2003—2005 prior to the reconstruction of US 93.  

AREA YEAR AVCs CROSSINGS PELLETS 
2003 3 207 N/A 
2004 5 281 79 EVARO 
2005 4 181 60 
2003 6 409 N/A 
2004 3 219 25 RAVALLI 

CURVES 2005 6 345 18 
2003 1 63 N/A 
2004 0 87 0 RAVALLI 

HILL 2005 3 112 2 
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Prior to the installation of extensive lengths of wildlife fencing with wildlife passages under and 
over the highway, observations of deer and black bear crossings, as interpreted from tracks in  
track beds along US 93, provided a random sample assumed to be representative of all crossing 
behaviors across the total length of the three study areas planned for mitigation measures.  The 
baseline variability and estimated total crossings observed prior to mitigation will help interpret 
year-to-year variation in animal-highway crossings that can be expected after mitigation is 
installed, as this will affect the overall comparison of pre- and post-mitigation crossings and, 
ultimately, the final assessment of the effect of the wildlife fencing and crossing structures.   

Between the areas of interest (Evaro, Ravalli Curves, and Ravalli Hill), the 2003-2005 estimates 
of deer crossings varied widely, while across the study area as a whole, overall deer crossings 
were much less variable.  This was an unexpected result.  The Evaro area is mostly coniferous 
forest, while the Ravalli Curves area is more agricultural and the Ravalli Hill area is open 
grassland.  The areas of inference encompass 12 km (7.5 miles), but the areas are separated by 
gaps of up to 18 kilometers (11 miles).  Changes in yearly climate conditions may influence deer 
migration on a larger scale, influencing movements of up to 13.2 km (8.2 miles) with deer 
shifting behavior in lighter or heavier winters (D’Eon and Serrouya 2005).  Thus, there may be 
large-scale movements of deer within the study area towards coniferous forests or towards 
agricultural or open grasslands depending on overall food availability and the previous winter’s 
conditions.  If this is the case, then examining changes in the study corridor as a whole may 
eliminate some of the large-scale variation in crossing rates due to deer population movements 
between the three areas.     

Black bear crossings were variable between study areas and years, with the only noticeable 
pattern being a substantial decline in all bear activity in the 2005 monitoring season.  While it is 
possible that food availability changed over the spring and summer of 2005, resulting in lower 
black bear movement, it is also conceivable that black bear populations in the area may have 
declined.  Unfortunately, there is not a supplementary population index with black bear as with 
deer populations (see section on pellet group indices), and such information could be important 
in interpreting whether black bear crossing activity was affected by crossing structures or by 
fluctuations in population numbers.   

The estimates of highway crossing rates hinged on the assumption that deer and bear did not 
respond to the presence of the track beds (i.e., avoidance or attraction).  However, track 
distribution data indicated potential avoidance by deer and black bears.  This could result in a 
conservative estimate of overall wildlife-highway crossings in each area.  It is unknown how 
many deer proceeded around the end of the bed that may have otherwise crossed the highway in 
the area of the track bed.  The preponderance of tracks observed entering the beds closer to the 
ends as opposed to the middle of the track beds suggests that some deer may have walked around 
the track bed as they approached or left the roadway.     

The potential track bed avoidance is a strong argument for more intensive photographic 
monitoring systems.  There are several camera systems (Reconyx, Recon Talon systems, etc.) 
that employ silent infrared flashes that cannot be perceived by wildlife (see Chapter 7, Post-
Construction Monitoring Recommendations for more details).  Further, photographic monitoring 
can provide information regarding daily activity patterns that can be directly related to traffic 
patterns, as photos are printed with exact day and time, while track beds cannot register time of 
day the animal crossed.  Finally, photographic monitoring in combination with track beds can 
confirm whether animals are truly avoiding beds (tracks were not recorded of animals that 
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approached the bed but did not cross it) or whether animals were simply reacting to the presence 
of the track bed in a manner that did not influence statistical inference from crossings (animals 
always crossed the bed anyway, just in non-uniform fashion).   

Track beds do have recognized limitations that need to be taken into account.  The estimated 
preconstruction estimate of animal activity in the road corridor is likely to be conservative 
because 1) field researchers used stringent rules to assign “crossing” behavior to a track, 2) track 
retention on beds may have varied by weather, vehicles driving off roads, cattle drives etc., and 
3) there may have been avoidance of track beds.  There were significantly fewer tracks of deer 
leaving the highway than approaching the highway.  This may be due to deer jumping over the 
track beds in a rush to leave the highway and not registering any prints.  Highways are positioned 
above the track beds, so it would be a simple matter for deer to leap the 2 m (2.1 yd) wide track 
beds, and there were a few anecdotal observations of this behavior reported by local commuters.   

Tracks recorded may be influenced by fluctuating population sizes, potentially driving increases 
or decreases in observed crossings that could confound the interpretation of the effect of the 
mitigation.  This parameter was addressed with mixed success using pellet transect indices to 
estimate relative changes in local deer populations (see section on pellet group transects).  Other 
behavioral adjustments can occur due to annual fluctuations in climate, which affects growing 
season temperatures, precipitation and fire cycles that may result in changes in forage 
abundance.  Less abundant forage potentially results in wider animal movements, which may 
intersect the highway more often.  Alternatively, wildlife movements may be shifted to areas 
away from the road, again blurring the interpretation of the data.  Human activities, such as 
residential development; timber harvesting; game harvesting; prescribed burning; attracting deer 
and bear (intentionally or not) with trash, orchards, irrigated fields or lawns, or making feed or 
salt blocks available can affect wildlife movements from year to year.  Additionally, track bed 
techniques and observer interpretation of tracks may introduce variability into the data.  Despite 
these potential shortcomings, the track bed methods employed in this effort offered a useful 
approximation of deer and black bear behavior regarding US 93 before and after the installation 
of wildlife fencing and crossings.   

Highways alone do not typically block animal movements or directly cause animal mortalities; 
rather, conflicts arise between animals and the traffic and drivers that travel on highways.  
Characteristics of the traffic such as total volume and the diurnal pulses and lulls in volume, 
observed speeds, and types of vehicles (e.g., passenger vehicles, recreational vehicles, semi-
trailer trucks) interact with engineered highway features and surrounding landscape potentially 
resulting in animal-vehicle collisions or an impassable barrier to animal movements.   

Traffic volume increased over 2003, 2004 and 2005, but the overall number of deer crossings in 
each year did not change (see Estimated Preconstruction Deer Crossing).  Fluctuations in the true 
deer population over this time are unknown, but pellet counts in 2004 and 2005 were run to 
index this parameter (see These results indicate that deer may be exhibiting some track bed 
avoidance behaviors when confronted with a “free standing” track bed (i.e., a track bed with no 
features to funnel movements across the bed and animals could chose to walk around the bed).  
Black bear do not seem to be responding to the same degree that deer were, though it is possible 
that some bear track bed avoidance may be occurring as well.  By understanding that there may 
have been some avoidance of the beds implies that the estimated preconstruction crossing 
estimates, especially in the case of deer, may be underestimating the total cross-highway 
movements.   
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Pellet Group Transects).  Fewer pellets were found in 2005, but the difference was statistically 
insignificant (P = 0.13).   

This simple analysis used a rough scale to determine deer response to differing traffic volumes, 
but finer-scale data were not available.  Regression analysis of average traffic volume and 
estimated deer crossings revealed a decline in crossings with increasing traffic, but sample sizes 
were insufficient to determine seasonal differences in crossing rates.  Based on the available time 
stamps on images of wildlife captured using remote-triggered photo monitoring techniques, it 
appeared that most deer (70%; n = 83) and bear (83%; n =6) activity occurs at night, while traffic 
volumes were heaviest during the day.  Thus, traffic volume may have had an effect on deer 
behavior.  In post-construction years, once deer adapt to the presence of crossing structures, there 
should be no relationship between deer crossings and traffic volumes on the daily or weekly 
scale.  However, unless fine-scale deer movement behavior is dictated by traffic volumes, deer 
would be expected to maintain patterns of higher activity in the morning and evening hours, as in 
preconstruction years.     

Pellet indices were used in an attempt to estimate deer populations in each area in 2004 and 
2005.  The pellet index complemented, and could only be validated through, the other methods 
that also indexed deer populations.  If deer populations were larger in years when pellet counts 
were higher, more deer-vehicle collisions and more deer crossings could be expected.  Two main 
conclusions were drawn from pellet data: 1) Evaro had more pellet groups per plot than Ravalli 
Curves, and 2) more pellet groups were found in 2004 than 2005.  While in 2004, Evaro had 
more pellets and more crossings than in 2005, Ravalli Curves showed an increase in crossings 
but a decrease in pellet groups over 2004 to 2005 (Figure 25).   

 

The pellet data were also compared with the 2004 and 2005 deer-vehicle collision (DVC) data 
for these two areas.  Like the crossing counts, researchers found that DVCs were higher in Evaro 
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Figure 25: Comparison between crossings per 100m and mean pellet groups per plot in the Evaro and Ravalli 
Curves areas in 2004 and 2005. 
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in 2004 than 2005, but that DVCs were low in Ravalli Curves in 2004 and high in 2005.  Thus, 
track bed counts correlated well with DVCs, but not with the pellet group index.  

The discrepancy in deer pellet groups relative to deer tracks and DVCs could be partially 
explained by the overall habitat in the Evaro and Ravalli Curves areas.  The Evaro area was 
largely coniferous forest, while the Ravalli Curves area was more open habitat, with grassland, 
wetland, and riparian components.  White-tailed deer could behave differently and have different 
diets in these habitat types, resulting in differential pellet deposition (Neff 1968, Eberhardt and 
Van Etten 1956).     

Used separately, the preconstruction monitoring methods addressed specific questions regarding 
preconstruction roadside ecology.  Used together, these indices help integrate important 
demographical and behavioral information to understand the current effects of US 93.  This 
information will be critical in determining the effects of mitigation measures on deer and bear in 
post-construction years.  The determination of statistical significance or insignificance in 
differences between the pre- and post-construction indices will provide some indication of the 
responses of deer and bear to the mitigation measures.  However, power analyses often indicated 
little ability to detect small changes in certain measures (i.e., AVCs within the area to be fenced).  
Therefore, examining the trends in all these indices together will effectively provide a more 
holistic view of deer and bear behavior before and after mitigation is installed in order to 
evaluate the performance of the mitigation measures.   
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6. OTHER US 93 ROAD ECOLOGY PRECONSTRUCTION RESEARCH 

The previous chapter summarized the preconstruction monitoring methods and baseline data 
centered on the evaluation study’s primary parameters of interest:  animal-vehicle collision 
(AVC) and wildlife-highway crossings for deer and black bear.  This chapter highlights other 
recent preconstruction research efforts related to various aspects of the reconstruction’s effects 
on black bear, deer, aquatic organism passage, and turtles.  Although there are inherently 
valuable outcomes from these projects on their own, each study provides an opportunity to repeat 
the research after mitigation is installed to comparatively assess the effects of the reconstruction 
and mitigation measures. 

6.1. Black Bear Movements and Genetics Relative to US 93 
Black bear and deer are the primary species of interest in this evaluation project.  However, 
compared to deer, black bear observations are relatively rare, making it challenging to obtain 
sizable datasets feasible for statistical inferences.  Additional in-depth black bear research was 
justified to provide a more comprehensive picture of the baseline preconstruction black bear 
behaviors and movements relative to the highway prior to construction.  To do this, WTI 
collaborated with University of Montana to conduct field research focused on black bear density, 
behavior, population demography, gene flow, and mortality relative to US 93 prior to the 
reconstruction.  Karin McCoy conducted this master’s thesis research study in 2002-2003 along 
and beyond the US 93 corridor from the junction of US 93 and Interstate-90 (south of the 
Flathead Indian Reservation boundary) to St. Ignatius (approximately midway along the 
reconstruction project; see Figure 1 in previous chapter).  McCoy’s study had the following 
objectives (McCoy 2005): 

• Estimate black bear preconstruction US 93 highway crossing rates and locations;  
• Determine what factors influenced black bear crossings, including food conditioning, 

age-sex class differences, topographic variables, traffic volume and speed, time of year, 
time of day, and degree of road-side anthropogenic development; 

• Assess spatial relationships between black bear crossing locations, black bear mortality 
due to vehicle collisions, and the planned locations of wildlife passages; 

• Collect DNA samples to estimate black bear density in the highway corridor; and 
• Evaluate the heterozygosity of DNA samples to provide preconstruction estimates of 

genetic variation within the population. 
General outcomes are summarized below.  For additional details, see McCoy 2005.   

6.1.1. Highway Crossings 
To document highway crossings, global positioning system (GPS) collars were used to spatially 
track black bear movements.  Eight black bears were captured in August 2002 and 11 bears were 
captured in May 2003 (including one recapture identified by a tattooed identification number on 
the underside of the upper lip). Eighteen individuals were monitored in total:  8 adult males, 6 
adult females, and 4 subadult males.  All collared bears weighed at least 34 kilos and were fitted 
with VHF radio collars with GPS capability (Telonics Incorporated, Mesa, Arizona, USA) to 
record hourly locations 24 hours a day.  The GPS collars were programmed to release November 
1, 2002 and October 15, 2003 for collection and data downloading.   
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A total of 31,780 locations were obtained for the 18 bears fitted with these collars.  With hourly 
locations of the instrumented bears, it was possible to determine where and when an 
instrumented bear moved and crossed the highway.  However, error associated with GPS 
location data could result in apparent crossings if collared black bears were simply proximate to 
the highway.  Hence, the following criteria were used to determine true highway crossings: 
crossings would be greater than 1 hour apart, pre- and post-crossing locations must be on 
opposite sides of the highway, and post-crossing locations were required to be a minimum 
distance from the highway to ensure it was an actual crossing, and not a result of GPS error.  
Following the criteria described above, 187 crossings of US 93 by 10 collared black bears were 
analyzed.   

Of the 10 collared bears that crossed US 93, 5 were determined to be food-conditioned (2 adult 
females, 2 subadult males, 1 adult male) and 5 were not food-conditioned (2 adult females, 1 
subadult male and 2 adult males).  Food-conditioned bears crossed highways significantly more 
frequently than non-food-conditioned bears (P = 0.009).  This is not unexpected given that the 
food-conditioned bears had home ranges that were more proximate to the highway; if bears 
moved randomly throughout their home ranges, bears with home ranges closer to highways 
would be expected to have a higher crossing rate than bears with home ranges peripheral to the 
highway.  The highway appeared to be “fully permeable” to food-conditioned bears, but posed a 
possible partial barrier to non-food-conditioned bears.   

Adult males seemed to cross less frequently than adult females or subadult males.  Most adult 
males did not cross the highway, and those that did crossed it infrequently.  However, these 
results may be confounded by the effects of food conditioning and home range location relative 
to the highway.  Further, adult males may dominate females, taking the best habitat available, 
restricting adult females to marginal habitat areas along the highway corridor, which may have 
contributed to more females crossing than adult males.   

Black bear highway crossing frequency differed by time of day and time of year.  Crossings 
occurred most frequently during early morning and evening hours, and most frequently in late 
summer through early fall.  Most (73%) bear crossings occurred when it was dark and traffic 
volumes were low.  Highway crossings were significantly and strongly negatively related to 
traffic volume (r = -0.84, P < 0.001).  Traffic volume was higher during daylight hours than 
dusk-dawn hours, and highest in spring-early summer, and declined throughout the summer into 
fall.    

The negative relationship between black bears and traffic volume could be causal (i.e., bears 
actively avoiding the highway during times of high traffic) or incidental due to bear behavior.  
Black bears are generally nocturnal, while traffic volumes are highest during daylight hours.  
However, black bears had high movement rates during spring through early summer, and 
generally crossed the highway less than expected during these times.   

Highway crossings were more likely to occur in areas with dense cover, at night, and near stream 
crossings.  Distance to development was not statistically significant in these models.   

6.1.2. Highway Mortality  
Highway mortalities of black bears were also documented and assessed.  Historic road kills that 
were documented by MTFWP over 1995-2004 were evaluated, as well as mortalities discovered 
in the study area (which included a stretch of Highway 200 from its junction with US 93 near the 
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town of Ravalli), in 2002 (n = 10) and in 2003 (n = 11).  These findings were considered an 
underestimate of true highway-related mortality because 1) fatally injured animals may leave the 
highway side and die where they cannot be easily seen or counted, and 2) human passers-by may 
drag carcasses off the road to illegally collect hides, skulls and claws.  Highway mortality of 
black bears tended to be highest for subadult bears, making up 68% of known age-sex class bears 
killed on the highway over 1995-2004.   

Road kill locations were closer to planned wildlife passage locations than randomly-selected 
locations (P = 0.06), indicating wildlife passages may facilitate safe highway crossings for bears.  
Road kills were more likely to occur nearer stream crossings or riparian areas, and in areas with 
more dense cover.   

6.1.3. Population Density and Genetic Diversity 
Lab analysis of DNA extracted from hair can provide insight into genetic relatedness across 
landscapes and numbers of individuals using an area.  Black bear hair was collected from 
methodical hair snagging efforts, as well as research-trapped bears, highway mortalities, 
management-trapped bears and other opportunistic hair sampling methods.  Hair samples were 
collected during 2002 and 2003, although sampling effort was more rigorous in 2003.   

Preconstruction baseline genetic variation for black bears within the highway corridor was 
determined from 232 hair samples.  DNA could not be extracted from 20 of these samples, and 
159 of the remaining samples were successfully genotyped (75%).  From these samples and from 
trapping records, 83 different black bears were identified (48 male and 35 female) in the 148km2 
area that was sampled for hair.  This translates to a minimum density of 0.47-0.56 bears per km2.  
Using 5 microsatellite DNA markers, baseline genetic variability for this population of black 
bears was deemed “exceptional”, with observed heterozygosity (degree of genetic variability) 
averaging greater than 85%.  

6.1.4. Conclusions and Recommendations 
The highway may be a barrier to some segments of the black bear population in the study area, 
but it is not currently a barrier to overall gene flow.  Planned locations of wildlife mitigation 
passages appear to be aligned with current black bear movements across the highway.   

While the location of the wildlife fencing and passages for the US 93 reconstruction had already 
been determined, McCoy offered considerations for other efforts to install wildlife fencing and 
crossings as follows: 

• Manage lands adjacent to mitigation passages to minimize human disturbance, including 
development and access to food sources that could result in habituation; 

• Install fencing to direct wildlife to passages and away from areas of high anthropogenic 
influence; 

• Consider high crossing rates associated with streams when placing wildlife crossing 
structures; and 

• Implement companion management focused on securing human foods and attractants to 
prevent food-conditioning. 
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McCoy’s efforts established a baseline of black bear movement and genetic data that can be 
further assessed by conducting a similar study after construction is completed.  These 
recommendations are discussed in Chapter  7.   

6.2. Preconstruction Hydraulic Profiles and Fish Passage Assessment of 
Culverts in Evaro Area 

Although the larger evaluation study focuses on terrestrial wildlife, reconstruction design efforts 
also addressed fish passage issues.  Outside of the preconstruction evaluation study budget, WTI 
recruited graduate student Darren Baune to conduct preconstruction baseline fish passage 
assessment of several stream crossings planned for replacement.  The intention is to repeat the 
same assessment after construction is completed to document hydraulic changes and subsequent 
effects on fish passage.  A summary of Baune’s professional paper follows; for more detailed 
information see Baune (2003).   

6.2.1. Methods 
Preconstruction data collection was performed at five stream crossings in the Evaro area.  Table 
14 summarizes existing and planned hydraulic passage structures at each data collection site, as 
well as the types of data collected and methods used to assess the fish passage conditions at each 
crossing.   

Assessing existing passage conditions at a stream culvert crossing typically utilizes a 
combination of biological, geomorphic and hydraulic data.  Three methods of assessing the 
“passability” of the existing structures were used on the study sites.  Passability refers to the ease 
in which fish can move through a structure.  Culverts are typically categorized as passable, 
partial barrier (a barrier at some flows but not all) or total barrier (no passage regardless of flow).   

The first method was a mark-recapture technique applied at the East Fork Finley Creek Crossing.  
The method involved separating the stream study site into a control reach (natural stream reach) 
and a treatment reach that included the existing culvert.  The control reach was adjacent to and 
downstream of the treatment reach.  Each reach was blocked at the downstream end with wire 
mesh supported by stakes driven into the substrate to isolate the study reach from the remainder 
of the stream.  At the upstream end of each reach, a fish trap was placed with wire mesh blocking 
the remaining portion of the stream.   

Electrofishing was used to remove any fish from the two study reaches.  These fish were placed 
downstream of the study reaches.  Electrofishing was then used to collect 50 fish from upstream 
of the study reaches.  These fish were randomly divided into two similar groups based on size 
and species.   

Fish in the treatment group had a right pelvic fin clipped for re-identification and fish in the 
control group had a left pelvic fin clipped for re-identification.  Each group of fish was placed in 
the downstream end of their respective reach.  Fish were recaptured in the traps as they moved 
upstream toward their original capture location.  Traps were monitored daily, and physical 
parameters including stream discharge, water depth in the culvert and velocity in the culvert 
were collected daily.     

The second method utilized comparisons between upstream and downstream fish population 
characteristics.  Researchers collected all fish via electrofishing from a 100 meter reach 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Other Research 

Western Transportation Institute  Page 72 

downstream of the culvert and a 100 meter reach upstream of the culvert on Schley Creek.  The 
fish population characteristics, including average length of fish in each sample and number of 
fish in each sample were compared to assess the passability of the crossing at Schley creek.   

 

 

Table 14. Summary of existing stream crossing structures, planned structure and assessment methods.    

Stream 
Crossing 

Name 
Existing 

Structure 
Planned 
Structure Data Collected Fish Passage 

Assessment 

East Fork of 
Finley Creek 6’ x  8’ box culvert 

12’ x 22’ 
corrugated metal 

culvert or box 
culvert 

• Stream habitat 
following USFS 
R1/R41; 

• Fish movement 
using mark-
recapture; 

• Stream and culvert 
hydraulic data; 

• Topographic data 

• Mark-recapture 
experiment; 

• Hydraulic 
modeling with 
FishXing2 

Schley 
Creek 

5’ diameter 
reinforced 

concrete culvert 

12’ x 22’ 
corrugated metal 

culvert or box 
culvert 

• Stream habitat 
following USFS 
R1/R41; 

• Fish sampling using 
upstream and 
downstream 
population 
characteristics; 

• Stream and culvert 
hydraulic data; 

• Topographic data 

• Up- and 
downstream fish 
population 
sampling; 

• Hydraulic 
modeling with 
FishXing2 

Montana 
Rail Link 
Fish and 
Wildlife 

Crossing 

One 5’ diameter 
corrugated steel 
culvert (north of 

RR) & one smaller 
culvert (south of 

RR) 

Open water 
passage with 

bridge 

Stream and culvert 
hydraulic data 

Hydraulic modeling 
with FishXing2 

Finley Creek 
Tributary #2 4’ x  3’ box culvert 

12’ x 22’ 
corrugated metal 

culvert or box 
culvert 

Stream and culvert 
hydraulic data 

 

Hydraulic modeling 
with FishXing2 

Frog Creek 
Crossing 

2’ to 3’ diameter 
concrete culvert 

4’ x 6’ corrugated 
metal culvert or 

box culvert  

Stream and culvert 
hydraulic data 

 

Hydraulic modeling 
with FishXing2 

1Overton, et al. 1997 
2 Version 2.2; http://www.stream.fs.fed.us/fishxing/downloadpage.html; last accessed 5/24/06. 
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A third method, used at all five crossing structures, involved using FishXing, a publicly-available 
software (Version 2.2; http://www.stream.fs.fed.us/fishxing/downloadpage.html; last accessed 
5/24/06), to assess the passability of the structures.  FishXing uses 1-dimensional hydraulic 
computations to estimate the water depth, velocity and outlet drop height in a given structure for 
selected flow rates.  The software then compares the swimming abilities of “design fish” to 
assess the passability of the crossing.  A 123 mm (4.8 in) adult cutthroat trout (Onchorynchus 
clarki) and a 97 mm (3.8 in) adult cutthroat trout were used as the design fish for the analyses of 
the East Fork Finley Creek structure and the Schley Creek structure, respectively.  The “design 
fish” size and species were representative of the size and sampled in these two streams during 
field assessments.  For the remaining three crossings, a 100 mm (3.9 in) adult cutthroat trout was 
selected as the design fish based on the size and species of nearby streams and because cutthroat 
trout in this size class had been reported to inhabit these study site creeks.  Three flow rates were 
modeled at each crossing: a low flow of 1 cfs, a medium flow equal to that measured in the field 
at the time of the site visit, and a high flow equal to the estimated 100 year flood flow (Jones and 
Jones 2002a).   

6.2.2. Results 
Data were collected in July and August of 2003.  Mark-recapture results at the East Fork Finley 
Creek crossing indicate the structure is a barrier to fish passage at 5 cfs, the flow rate measured 
during data collection.  Fish species found in this stream included brook trout (Salvelinus 
fontinalis), brown trout (Salmo trutta) and westslope cutthroat trout (Onchorynchus clark lewisi).  
The average fish length for this study was 123 mm (4.8 in).  Eight of 25 fish released in the 
control reach were captured in the upstream trap of that reach.  No marked fish were captured in 
the trap for the treatment reach.  This outcome was not unexpected given that a 1.7 foot drop at 
the culvert outlet existed during these experiments.  Large outlet drops can reduce the passability 
of a structure or prevent fish passage altogether (Cahoon et al. 2005).     

The upstream and downstream fish population characteristics were different at the Schley Creek 
crossing.  The electrofishing census yielded 26 fish downstream and 5 fish upstream of the 
crossing structure.  All fish collected were visually identified as westslope cutthroat trout.  The 
average length of the fish was 97 mm (3.8 in) (n = 31).  The difference in the number of fish 
upstream versus downstream at this site may reflect the passability of the crossing; however, an 
irrigation diversion located approximately 10 meters downstream of the most downstream extent 
of the population sample may have affected the fish density in this study.  Schley Creek was dry 
downstream of this diversion.  The lack of water and presence of the diversion likely influenced 
the distribution of fish in the downstream sample and confounded the results of this culvert 
passability assessment.    

Table 15 summarizes results of the FishXing assessment for the five stream crossing sites.  All 
structures were considered passage barriers due to excessive velocity during some portion of the 
year.  Three of the six crossings were estimated as a barrier due to excessive leap heights.   
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6.2.3. Conclusions and Recommendations 
Overall, the passability assessment of the study culverts indicates that each culvert is likely 
functioning as a fish passage barrier during at least a portion of the year (i.e., each culvert was 
categorized as a partial barrier).  Poorly designed, hastily constructed or improperly maintained 
culverts can create hydraulic or geomorphic conditions that restrict or prohibit fish movement, 
with important consequences to fish populations.  A literature review of fish passage studies 
shows that both adult and juvenile salmonids (e.g., trout and salmon species) move frequently 
and at various times of the year (Kahler and Quinn 1998).  Therefore, habitat connectivity is 
critical to the long-term survival of many fish populations.  Characteristics of culverts that 
impede fish movement include excessive outlet drop heights and velocities, insufficient water 
depth or debris traps (Robison et al. 1999, Rieman and McIntyre 1995, Votapka 1991, Baker and 
Votapka 1990).   

Much effort is spent today to ensure new culvert designs on fish bearing streams allow fish and 
other aquatic organisms to pass.  These efforts often result in large structures that are embedded 
into the stream bed or that have a natural stream morphology purposely constructed within them.  
The cost of crossings generally increases as their size and complexity of the interior increases.   

6.3. Landscape and Highway Characteristics Related to Preconstruction 
Deer-Vehicle Collisions and Deer Crossings of US 93 

To better understand site-specific variables that influenced the occurrence of preconstruction 
deer-vehicle collisions (DVCs) and deer-highway crossing rates on US 93, WTI and the Wildlife 
Conservations Society (WCS) collaborated to support (outside of the preconstruction evaluation 
study budget) graduate student Whisper Camel to focus her research thesis on this topic.  
Working with DVC and deer carcass removal reports from MDT’s Traffic Safety Bureau, Camel 
identified and visited DVC sites and “control sites” where no DVCs had been reported as well as 
each track bed site and measured numerous habitat, landscape, and highway variables locally.  
Using GIS, Camel measured additional variables at the landscape-scale associated with these 

Table 15.  Summary of FishXing results for each study site stream culvert based on field measurements 
collected in July and August of 2003, prior to reconstruction of US 93.  Flow rate represents the minimum 
flow in cubic feet per second that resulted in a barrier to fish passage.   

Stream Crossing Leap 
Barrier 

Velocity 
Barrier 

Flow Rate 
(cfs) 

East Fork of Finley Creek Yes Yes 29.3 

Schley Creek Yes Yes 1.0 

Finley Creek Tributary #2 Yes Yes 5.8 

Montana Rail Link (northern crossing) No Yes 4.7 

Montana Rail Link (southern crossing) No Yes 5.9 

Frog Creek No Yes 4.0 
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same sites.  She identified a priori candidate models of combinations of local and landscape 
variables that were hypothesized, based on relevant literature and expert opinion, to be correlated 
with DVC and highway crossing events at local, half-mile, mile and two mile scales.  Each 
model was then analyzed using logistic (for DVC versus non-DVC control sites) and multiple 
(for deer-highway crossing rates) regression techniques.  Models were comparatively ranked 
using an information-theoretic approach (Aikake’s Information Criterion or AIC; Burnum and 
Anderson 1998) to select the model that “best” predicted DVC and deer-highway crossings.   

Final results are expected early 2007.  A follow-up analysis incorporating variables related to the 
mitigation measures could be undertaken after construction is complete and a sufficient sample 
of DVCs reports is compiled to further assess the wildlife fencing and crossing structure 
installation effects on DVCs.   

6.4. US 93 Preconstruction Effects on Western Painted Turtle Movements 
and Population Structure in the Ninepipes Area 

Numerous stakeholders, including a wildlife biologist, CSKT tribal members and the general 
public have raised concerns about US 93’s impacts on the western painted turtle (Chrysemys 
picta bellii) population in the Ninepipes area.  Bisecting the prairie-pothole wetland habitats that 
these turtles depend upon, US 93 has been identified as a potential barrier to movement between 
ponds across the highway from each other, as well as a source of mortality for turtles, with 
potential to fragment this population and lower population viability.  Further, safety concerns 
have been raised due to drivers braking and swerving to avoid turtles on the highway.   

Fowle (1996a, 1996b) determined road kill rates for western painted turtles in this region were 
significant, and recommended mitigation measures be implemented to decrease turtle mortality 
and increase the permeability of the highway.  Building on this effort, the MDT, with additional 
support from CSKT; the Montana Cooperative Wildlife Research Unit; Montana Fish, Wildlife 
and Parks; University of Montana; the Salish Kootenai College, and WTI, funded a three year 
field study assessing the highway’s effects on connectivity and population parameters for the 
Ninepipes western painted turtle population prior to the reconstruction of the US 93.   

The primary goal of this research was to understand landscape-level connectivity and potential 
effects of the highway on the western painted turtle population that straddles an 18 km (11.2 
mile) section of the road in the Ninepipe/Ronan area (Griffin and Pletscher 2006). Objectives of 
the research included the following (Griffin and Pletscher 2006): 

• To determine demographic rates of survival in and movement between ponds; 
• To determine the extent to which the highway obstructs movements; 
• To examine potential effects of road mortality on the population; 
• To compare available fencing methods used in herpetofauna-highway interaction projects 

and assess their effectiveness at minimizing turtle road kill and directing turtles to 
wildlife crossing structures; and 

• To test flashing material as a barricade on fences to keep turtles from breaching barriers 
or directional fencing. 

To accomplish the objectives relating to demographics and movements, a capture-mark-
recapture study and road mortality study were conducted.  Initial results follow; further details 
can be found in Griffin and Pletscher 2006.   
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6.4.1. Highway Mortality 
Thirty-three road mortality surveys were performed approximately once a week from mid-May 
through late August 2003-2005 along a 6.4 km (4 mile) section of US 93 and 4 km (2.5 miles) of 
two low-volume side roads.  A total of 1,040 western painted turtles were killed on US 93 while 
19 turtles were found on the low-volume side roads.  Of the turtles killed on the highway, 43.3% 
(451) were adults and 21.3% (221) were juveniles, while the remaining individuals age class 
could not be determined.  Sex could not be identified for 61% (639) of road mortalities, but of 
the turtles that sex could be determined, no sex bias was found as approximately an equal 
number of males and females (99 and 81, respectively) were found. 

Most mortality occurred in June and more individuals were killed on roads prior to mid-July than 
later in the summer.  More adults were killed in early summer although males experienced more 
mortality than females later in the summer, while juveniles were killed more consistently 
throughout the summer with a spike of juvenile mortality occurring in August.   

Mortality was greatest where large ponds were adjacent to both sides of the highway.  Most 
turtle kills that could be identified were from these proximate ponds while only 3 turtles from the 
furthest study pond were found killed on the road.  More road mortality turtles were counted than 
natural over-winter mortalities. 

6.4.2. Capture-Mark-Recapture Study 
A total of 2,335 individual turtles were identified in 8,520 captures from 2002-2004.  With 873 
and 803 males and females identified, no sex bias was indicated overall, although two pond 
complexes had statistically significant deviations from 50:50 sex ratios where more males than 
females were found in one pond and more females than males in another.  A total of 659 
juveniles were marked.   

Movements of marked turtles typically occurred between permanent and temporary ponds with 
the longest movement of 2,400 meters made by a juvenile.  No significant difference was 
detected between numbers of males and females that made inter-pond movements, however it is 
possible that females may have moved away from and back to an individual pond to nest which 
would not be detected with the capture-mark-recapture techniques.   

Fine-scale movements between ponds bisected by the highway indicated that 106 and 78 turtles 
moved away from the two ponds without crossing the highway, while 40 turtles successfully 
crossed the highway.  However, 150 mortalities were recorded between these ponds with 69 
identified as adults and of these 36 (52%) were marked, indicating that about half (47%) of the 
turtle crossing attempts resulted in mortalities, however this estimate may be low given that 19 
turtles found dead on the road could not be confirmed if they were marked. 

Deep ponds had most consistent abundance estimates while shallower ponds showed dramatic 
reductions in abundance estimates as these ponds were affected by drought conditions and water 
depth decreased as summer advanced.  For the study area and years, the regional adult 
abundance estimate peaked in spring 2003 at 854 and fell to 372 in fall 2004.  Based on these 
estimates, road mortality counts conservatively estimated 6.0% and 7.9% (in 2003 and 2004, 
respectively) to 16.9% and 13.0% (in 2003 and 2004, respectively) of the population was killed 
on the highway during this study. 
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6.4.3. Survival, Population and Movement Modeling 
Using the capture-mark-recapture data, modeling survival probabilities indicated that the pond, 
season, and drought conditions had the greatest influence on survival rates.  Distance to road was 
not a significant factor given that ponds far away from the highway were still affected by road 
mortality.  In one case, from the study pond second furthest from the road (881 m [0.5 mile]) 
incurred the highest numbers of road mortality turtles when that pond began to dry and turtles 
moved over the road to another pond.  Two study ponds that retained water experienced higher 
survival rates than other ponds; ponds that lost significant water had lower survival rates due to 
the fact that moving makes them more susceptible to road mortality.  The population structure 
did not appear to be affected by the highway given that the living turtle sex ratio was not 
significantly different than a 50:50 male to female ratio and there appeared to be no sex bias in 
recorded road mortalities. 

Only 1-2% of annual movements occurred between pond complexes indicating that the 
movement that does occur is important to providing connectivity to local populations in these 
pond complexes.  Modeling showed that 7-10% of movements were temporary departures from 
the pond complexes and considerable temporary emigration outside the complexes indicated that 
western painted turtles may use larger areas seasonally than previously thought.  Movements 
may be limited by the highway as the models showed that road reduced turtle movement rates 
and turtles were less likely to move long distances if a road intervened. 

The highway affects the turtle population via direct mortality and reduced connectivity.  
Considering turtle populations’ slow growth and reproductive rates, a conservative estimate of 6-
17% of the population killed on the highway, and additive mortality due to sensitivity to drought 
conditions, the observed mortality could not be sustained if the population were closed (i.e., no 
emigration or immigration from other populations).  However it was evident that temporary and 
permanent emigration occurs from surrounding reservoirs, underscoring the importance of 
maintaining landscape connectivity for this species. 

6.4.4. Recommendations 
Three priority areas of the highway include two locations where the road splits two kettle ponds 
and another location (immediately south of the scenic turnout at Beaverhead Lane) where the 
road lies between two semi-permanent ponds on one side of the road and a permanent pond on 
the other.  Culverts and fencing are recommended based on findings from the final two 
objectives related to research on mitigation measures, with references to specific dimensions, 
design and placement based on previous turtle-road studies elsewhere (Dodd et al. 2004, Aresco 
2005).  Given that the Ninepipe/Ronan section of US 93 has not gone through the detailed design 
phase for reconstruction, specific recommendations for consideration in the design process 
include the following (see Griffin and Pletscher 2006 for additional details): 

• Construct bridges or oversized culverts in priority areas (between kettle ponds) where 
water crossings occur; 

• Construct oversized box culverts with flat bottoms and earthen substrate in dry crossing 
areas; 

• Minimize construction activities in the priority areas from mid-May to mid-July when 
movement activity is highest in order to reduce disturbance and mortality; 
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• Monitor construction and in kettle pond priority areas and provide safe passage 
opportunities around the construction detours;   

• Install wing or directional fencing to funnel turtles to culverts; 

• Post “Turtle Crossing” warning signs May-September to increase motorist awareness 
during the season they are most likely to encounter turtles (so as to not habituate drivers 
to the message); and 

• Conduct a post-construction study to evaluate the efficacy of the crossings in providing 
landscape connectivity.  It is noted that only two studies (Dodd et al. 2004, Aresco 2005) 
have pre- and post-construction data evaluating construction effects on connectivity and 
that this study is the only study known to include preconstruction population data, 
underscoring the importance of this effort in providing unique and valuable insights into 
long-term effects of roads on turtle population dynamics and connectivity. 
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7. MEASURES OF EFFECTIVENESS AND POST-CONSTRUCTION 
MONITORING RECOMMENDATIONS 

In conjunction with developing the preconstruction monitoring methods, WTI developed 
complementary post-construction monitoring methods for recommendation and suggested 
quantitative “measures of effectiveness” (MOEs) for the main parameters of interest in this 
evaluation study:  animal-vehicle collisions (AVCs) and wildlife-highway crossings.  After an 
overview of the complexities of determining “effectiveness”, post-construction monitoring 
recommendations and MOEs are outlined below.   

7.1. Determining “Effectiveness” 
Determinations of effectiveness are based on biological, social, economic, political, safety, 
and/or other values (Table 16).  For example, although monetary value has been placed on 
human life (Sielecki 2004, Schwabe et al. 2002, U.S. Department of Transportation 2002, Romin 
and Bissonette, 1996), many would argue that a human life is priceless based on their personal 
values.  Increasing wildlife habitat connectivity is difficult to quantify monetarily, but known to 
be biologically important; improved connectivity is highly valued for some people, but others 
may not be concerned about connectivity.  While it is possible to present measures of 
effectiveness, effectiveness is ultimately determined by an individual’s or agency’s values.   

Table 16:  Possible “effective” outcomes of management actions to maintain wildlife linkage zones (i.e., 
habitat connectivity corridors) where wildlife move across landscapes between core areas of habitat 
(Servheen 2006). 

Biological 

• Wildlife movement across the landscape  
• Gene flow  
• Dispersal success  
• Female movement  
• Access to resources  
• Reduction of wildlife mortality 
• Reduction of wildlife-human conflicts in linkage areas 

Economic 

• Improved efficiency in project planning  
• Road or bridge designs that don’t have to be rebuilt for wildlife needs 
• Minimal environmental review and court challenge  
• Reduced safety liability risk due to highway design and planned wildlife 

crossing/fencing in likely wildlife crossing areas  
• Property value increases due to perceived value of adjacency to wildlife linkage 

areas 
Public 
Safety • Reductions in AVCs 

Social 

• “Buy in” by local people to build support for concept of mitigation measures 
• Acceptance of linkage by local public/political interest 
• Involvement of local people in refinement of linkage area locations 
• Involvement of local people in linkage area management design 

Political 

• Support for linkage planning by mgmt in budget and personnel decisions by DOT 
• County planning board considerations of wildlife linkage in long-term planning and 

subdivision approval considerations  
• Congressional support for linkage area identification, management, monitoring 

and evaluation in federal agency budgets 
• County commissioner support for linage planning and implementations 
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The CSKT, MDT, and FHWA have a variety of viewpoints about what “success” or 
“effectiveness” may look like once the mitigation measures are established.  To understand the 
range of views from agency personnel, WTI sent out a survey to the US 93 Technical Design 
Committee members, as well as other key staff involved in the US 93 reconstruction efforts.  
Three people from MDT, two from CSKT, and one from FHWA provided feedback to the 
survey.  Responses to the open-ended question: “Are there other ways you might deem (the 
wildlife mitigation efforts) “effective” (or not)?” reflected a range of viewpoints, as follows: 

• “…individual crossing areas should be viewed independently based not only on 
effectiveness from a safety standpoint but also biological standpoint.  Effectiveness based 
upon what is necessary to maintain local populations and structure over time. But if the 
local populations are already healthy and functional, then it may be necessary to consider 
the effectiveness of the structure purely on animal-vehicle collision reduction basis.  
Bottom Line, from my standpoint, I feel effectiveness should not only be based upon 
safety issues (reductions in animal-vehicle collisions) but also, are we allowing for 
connectivity of local populations so that they can maintain or increase in numbers and 
have stable structure without adverse effects to available habitat”; 

• “As long as we learn better ways to handle animals and vehicles and can apply what we 
learn on other projects both within and outside Montana it will be an effective 
experiment”; 

• “I believe that any change is worth the investment.  While not a wildlife expert, I believe 
any change, no matter how long it takes is worth the investment.  I feel it's about time we 
construct human transportation corridors that respect wildlife transportation corridors, 
especially when we superficially enhance the ability for human to travel at break neck 
speeds, burning finite resources and altering out global climate and local ecosystems”; 

• “A benefit / cost ratio of greater than 1 ($ value of benefit divided by $ value of costs). It 
will be very important to determine this value by using benefits and costs as measured in 
dollars.  Utilizing or developing various methodologies for conducting a true benefit/cost 
analysis for these types of measures is essential to be able to justify the expenditure of 
public funds”; 

• “Acceptance by CSKT.  The main intent of these crossings is to support cultural values 
held by CSKT and others.  Any decrease in mortality or increase in wildlife usage will be 
considered a success”; and 

• “We need to be open to the idea that effectiveness will likely increase as time passes after 
construction.  Initial results may not tell us much.  Additionally, time for habitat and 
cover development must be included into the equation -- these factors will also require 
time”. 

Recognizing that different viewpoints and values are equally valid, the raw results, with no 
judgment of the outcome, need to be presented to allow independent assessments of effectiveness 
based on individual values.  However, it is equally important to set reasonable and measurable 
targets defining desirable or undesirable outcomes that justify and defend management decisions 
in order to be accountable to the public.   

Effectiveness relates to some “desired outcome” based on values; however, determining if there 
is an effect that may be attributable to a specific change (e.g., the installation of mitigation 
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measures) is an important component of determining effectiveness.  Effect in this context refers 
to a change that may be measured statistically and/or biologically.  A statistical effect (e.g., a 
detectable reduction of deer-vehicle collisions by 35%) may not be considered effective by 
parties wanting to see a reduction by 50% or greater.  Other parties may consider an effect of a 
reduction in deer-vehicle collisions by just 1% effective if they highly prize the value of the 
animals and/or human safety risks.  A statistically detectable effect may or may not be 
biologically significant; i.e., just because a change was measured does not necessarily mean it 
will have biological impacts on the population or community of interest.  Conversely, it is 
possible to have biologically significant effects or changes within the population of interest that 
are not statistically detectable, an unfortunate outcome for imperiled populations if managers do 
not recognize the potential for this outcome.   

Many factors influence whether actual effects may be detectable.  With large sample sizes, 
applied statistics may detect significant effects to a fraction of a percent – an effect size that may 
be too small to be biologically significant.  On the other hand, in cases with small sample sizes 
(i.e., rare or elusive species), a statistical effect may only be determined after very large changes, 
and a statistically insignificant change may be very biologically significant (Taylor and 
Gerodette 1993).  As more data is amassed, variability in the dataset may decrease, which 
increases the ability to detect statistical differences in the response variable.  Additionally, as one 
agency respondent mentioned above, time will likely affect the outcomes observed as animals 
adjust their navigation patterns to a landscape with wildlife fencing and crossings.  Hence, the 
data may reveal different outcomes at several different points in time.   

Finally, no matter what effect may be measured, especially in ecological field studies, it can not 
be considered “proof” of a simple “cause and effect” relationship (Neter et al. 1996).  Other 
variables such as population fluxes, unusual weather events, increases in traffic volumes or 
changes in observed speeds need to be assessed to understand how these factors may contribute 
to observed changes in the response variable.  In the case of the US 93 evaluation, routine 
evaluation of the parameters of interest along with a handful of other potentially influential 
variables will help interpret how the mitigation measures influence local deer and black bear 
populations over time.   

In the context of the parameters of interest for the US 93 evaluation study, effects pertain to a 
measurable change in deer- and bear-vehicle collisions and deer and bear highway crossings.  
Differences in sample sizes for these two species allows for quantitative considerations when 
determining MOEs for deer-vehicle collisions and highway crossings, but bear MOEs for these 
parameters of interest are limited because of small sample sizes.  Three measures of 
effectiveness are assessed relating to biological, economical, and public safety interests.  The 
following sections discuss recommendations for post-construction monitoring and suggested 
measures of effectiveness for the primary parameters of interest.  Additional post-construction 
monitoring recommendations for other confounding variables that need to be accounted for are 
also outlined.   

7.2. Animal-Vehicle Collision Post-Construction Monitoring 
The preconstruction AVC data were obtained from MDT’s Traffic Safety Bureau, including 
AVC reports from the Montana Highway Patrol (MHP) and carcass removal reports from 
MDT’s Maintenance Division.  Additional data on black bear road kill were obtained from 
Montana Fish, Wildlife and Parks.  Although there are recognized limitations to using these data, 
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they were consistently collected over the years immediately prior to reconstruction, they did not 
expose field staff to additional safety risks, and MDT and MHP made these data readily available 
for the purposes of this evaluation study.  Additionally, the reporting systems used to compile 
these data will continue to be used during and after reconstruction.  Therefore, it logically 
follows that the post-construction AVC dataset including MHP AVC and MDT carcass removal 
reports should be used for assessing potential changes in AVCs.   

Maintaining current level of effort in AVC and carcass removal reporting will be vital to 
effectively compare the pre and post-construction dataset.  Increasing effort will bias the post-
construction road-kill counts high, while decreasing search effort could result in “false success.”  
An annual memorandum from MDT Maintenance Division reminding maintenance crews to 
continue to report carcass removals with the same effort as has been applied since 2002 may help 
maintain consistency (there is also the valid concern that such “reminders” cause an inadvertent 
increase in reporting; it is difficult to say what might be the best technique to continue uniform 
effort over time). 

One concern with measuring effectiveness based on trends of AVCs is that animal populations 
fluctuate, and AVCs may be correlated with such fluctuations.  A sharp increase or decrease in 
animal populations could therefore result in more or fewer AVCs independently of the effects of 
crossing structures.  This potential confounding factor was not unrecognized.  When analyzing 
deer-vehicle collisions, the post-construction data must be at least qualitatively compared to 
concurrently-collected pellet data, as pellet data provide an index to population fluctuation 
(Murray et al. 2002, Krebs et al. 2001, Massei et al.1998, Harestad and Bunnell 1987).  Although 
there was no corresponding index for black bears, this again underscores the importance of 
collecting more detailed data through a companion telemetry study. 

7.2.1. Deer-Vehicle Collisions 
Measures of effectiveness regarding deer-vehicle collision (DVC) data depend on two factors: 
the perceived change in DVCs together with the change in local deer populations.  It is possible 
that an increase in deer populations could result in an increase in DVCs, even if crossing 
structures are effective, resulting in the false conclusion that crossing structures did not work.  
The reverse conclusion could also apply.  Therefore, it is insufficient to draw measures of 
effectiveness from trend in DVCs alone.  The below measures based on DVCs should be 
compared to the pellet transects to provide the vital link to population numbers.  All post-
construction analysis of DVCs should be compared to pellet data to interpret changes.  

Preconstruction power analyses of the deer-vehicle collision (DVC) data for the entire study area 
indicated that a 35% change in DVCs per mile per year would be detectable after 3 years of post-
construction data collection, and a 22% change would be detectable after 5 years of post-
construction data collection.  These power analyses assumed equal variance in year-to-year 
DVCs in the before and after construction years.  Greater variability in the post-construction 
AVC dataset would require a greater change in AVC rates and/or longer monitoring to 
statistically detect this change while less variability would result in smaller detectable changes or 
fewer monitoring years required to detect such a change.  
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7.2.1.1. Determining Statistically Significant Effects 

To determine the effectiveness of the proposed mitigation measures on the safety, economic, and 
biological impacts of DVCs, a helpful first step is to quantify the effect of mitigation on DVCs.  
The most straightforward approach would be to use a one-sided t-test to compare pre and post-
construction DVCs across the entire study area to determine whether a decline occurred.  
Additional analyses to account for other variables (e.g., population fluctuations, extreme weather 
events, habitat reduction, increases in traffic volume) will be important, as a statistical difference 
in DVCs between the pre and post-construction years does not necessarily imply a cause-and-
effect relationship.  The framework for hypothesis testing is outlined below: 

• Null hypothesis:  (DVCs/mile/year)pre = (DVCs/mile/year)post 

o If test fails to reject the null hypothesis, there is no statistically detectable change in 
DVCs before and after mitigation.   

o This outcome does not necessarily mean that there was no change in DVCs; it only 
means that the level of change was not statistically detectable given the variability of 
the data.  Assuming variability in the post-construction data is the same as 
preconstruction variability, the power analyses using the preconstruction DVC data 
indicated the following: 

 If test is based on 3 years of post-construction data, a statistically undetectable 
change less than 35% may have occurred;   

 If test is based on 5 years of post-construction data, a statistically undetectable 
change less than 22% may have occurred; and   

 Additional assessment of the datasets may reveal outliers of DVCs before and 
after mitigation, and researchers can infer how these outliers may affect the 
means that were compared. 

• Alternative hypothesis 1:  (DVCs/mile/year)pre > (DVCs/mile/year)post 

o If the test supports this hypothesis, fewer DVCs occurred after mitigation than prior to 
mitigation   

o Assuming variability in the post-construction data is similar to preconstruction, the 
power analyses conducted with the preconstruction data indicated the following 
outcomes: 

 If test is based on 3 years of post-construction data, post-construction DVCs 
will have decreased by greater than 35% and 

 If test is based on 5 years of post-construction data, post-construction DVCs 
will have decreased by greater than 22%.   

These tests will determine whether there was a statistically detectable effect and do not relate to 
biological or safety effectiveness.  However, this information determines a lower boundary for 
designating MOEs.  For example, a greater than 25% reduction in DVCs after three years would 
not be an appropriate MOE given that the smallest change detectable would have to be greater 
than 35%.  If a 30% reduction in DVCs occurred, which would be considered effective based on 
the MOE, a false conclusion would be made saying the mitigation did not meet the MOE 
standards when, it actually did, simply because the test was unable to detect the change 
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statistically.  Therefore, based on statistical analyses, WTI suggests the lowest level of 
effectiveness considered for DVCs be based on a minimum of a statistically-detectable 35% 
reduction in DVCs.   

7.2.1.2. Economic Measures of Effectiveness 

These tests provided a framework to relate observed effects to economic measures of 
effectiveness.  There was an average of 90 deer killed per year, as assessed over 4 years, with a 
minimum detectable difference of a 35% reduction in DVCs.  Costs of the mitigation structures 
were assessed (Skillings and Connolly 2000) and monetary values of property damage, costs of 
human injuries and fatalities, costs of the deer as a hunted species, and costs of carcass disposal 
have been quantified in numerous sources.  Synthesizing this information, it can be determined 
how much of a reduction in DVCs per year would pay for the cost of implementing the 
mitigation measures after how many years.   

To lay the framework for an economic MOE, it is necessary to briefly recapitulate how the 
average costs for a deer-vehicle collision were calculated.  The citations below were originally 
summarized in Huijser (2006).   

• Costs of Property Damage: 

In Nova Scotia, the minimum percentage of white-tailed deer-vehicle collisions 
(Odocoileus virginianus) resulting in property damage was estimated at 90.2% (3524 
collisions with property damage from 3905 collisions [Tardif & Associates Inc. 2003]). 
In Utah, this percentage was estimated at 94% (Romin and Bissonette 1996). For this 
analysis it was assumed the percentage of all collisions resulting in property damage to be 
92% for deer.  

The property damage (repair costs for vehicle) was estimated at $1,200-$1,881 for deer in 
Utah and Vermont, in 1992 (Romin and Bissonette 1996), $1577 on average for different 
regions in the United States in 1993 (Conover et al. 1995), and $1,700 for deer in the 
Midwest, in 2002 and 2003.  For this analysis it was assumed that the average vehicle 
repair costs as a result of deer-vehicle collisions were $2,000.  Combined with the 
percentage chance that a collision indeed results in property damage, the average vehicle 
repair cost per deer-vehicle collision was estimated at $1,840. 

• Costs of Human Injuries: 

An estimated 19,551 deer-vehicle collisions result in human injuries each year (average 
for 2001-2002; Conn et al. 2004).  The percentage of white-tailed deer-vehicle collisions 
resulting in human injuries was estimated at 1.3% (Finland; Haikonen and Summala 
2001), 3.8% (Midwest; 4,724 collisions with human injuries from 125,608 collisions 
[Knapp et al. 2004]), 4% (Ohio; review in Schwabe et al. 2002), 7.7% (Ohio; 10,997 
collisions with human injuries from 143,016 collisions [Schwabe et al. 2002]), and 9.7% 
(Nova Scotia; 378 collisions with human injuries from 3905 collisions [Tardif & 
Associates Inc. 2003]). For this analysis it was assumed that a deer-vehicle collision 
resulted in an average of 0.05 human injuries.  
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In Canada, the costs to society of a human injury as a result of a traffic accident was 
estimated at CAN $97,000 (Sielecki 2004). In Alberta, the average net cost per human 
injury was estimates at CAN $22,961 (hospitalized) and $3,466 (emergency room only) 
(Jacobs et al. 2004). In the United States, the cost of a serious injury was estimated at 
$170,000 for a severe injury and $33,000 for a minor injury (Schwabe et al. 2002), 
$206,000 for an incapacitating injury, $41,000 for an evidential injury, and $22,000 for a 
possible injury (U.S. Department of Transportation, 2002). In New Mexico, Biggs et al. 
(2004) assumed an average cost of $10,000 per human injury, including medical 
expenses and lost work time. In Ohio, Wu (1998) estimated these costs at $34,000 for 
1996. For this analysis it was assumed that costs of human injuries would average at a 
conservative $2,500 per DVC.  

• Costs of Human Fatalities: 

A study that used data from nine states (Colorado, Georgia, Minnesota, Missouri, North 
Carolina, Ohio, Pennsylvania, South Carolina and Wisconsin) found that 77% of all 
animal-vehicle accidents with human fatalities involved deer (Williams and Wells 2004).  
The percentage of white-tailed deer-vehicle collisions resulting in human fatalities was 
estimated at 0.009% (Ohio; 14 collisions with human fatalities from 143,016 collisions 
[Schwabe et al. 2002]); 0.029% (North America; review in [Schwabe et al. 2002]), 0.03% 
(Midwest; 33 collisions with human fatalities from 125,608 collisions [Knapp et al. 
2004]), 0.05% (Nova Scotia; 2 collisions with human fatalities from 3905 collisions 
[Tardif & Associates Inc. 2003]). For this analysis it was assumed that a deer vehicle 
collision resulted in an average of 0.0005 human fatalities.  

In the United States the monetary loss of a human fatality was estimated at $1,500,000 
(Romin and Bissonette 1996), $2,393,000 (Schwabe et al. 2002), and $2,981,000 (U.S. 
Department of Transportation 2002). In Canada, the costs to society of a human fatality 
as a result of a traffic accident was estimated at CAN $4,170,000 (Sielecki 2004). In a 
review study Trawén et al. (2002) calculated the costs of a fatal casualty of road accidents 
in a wide range of countries, including the United States. They calculated the costs at 
about $3,600,000 for the United States in 1999. For this analysis it was assumed that a 
human fatality as a result of a deer-vehicle collision averaged $3,000,000 in costs to 
society, resulting in an average cost of $1,500 in human fatalities per deer collision.  

• Costs of Deer Fatalities: 

Animals usually die immediately or shortly after having been hit by a vehicle. In 
Michigan, Allen and McCullough (1976) estimated that a minimum of 91.5% of all 
white-tailed deer that were hit by a vehicle died at the scene or later. For this analysis we 
assumed that a deer-vehicle collision always resulted in the eventual death of the deer.  

The monetary value of deer has many different components, including license fees, costs 
associated with hunting (materials, transport, lodging, meals), and recreational wildlife 
viewing. Hunting license fees in British Columbia were CAN $15-125 for deer for 
residents and non-residents respectively (Sielecki 2004). The net return to the economy 
of British Columbia from hunting was estimated at CAN $1,270-7,450 per deer (Sielecki 
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2004). The value of recreational wildlife viewing may be more difficult to quantify.  The 
total net return to economy of British Columbia from recreational wildlife viewing was 
estimated at CAN $174,000,000 per year, but this included 681,000 individuals of 
various large mammal species, translating to an average value of CAN $255 per large 
mammal for recreational wildlife viewing (Sielecki 2004). In New Mexico, the minimum 
estimated income to the state as a result of hunting was estimated at $250 per deer, 
excluding hunter expenditures and associated economic benefits (Biggs et al. 2004). In 
Utah, Romin and Bissonette (1996) estimated the economic value of a deer at $1,313 in 
1992. Bissonette and Hammer (2000) estimated the value of deer in Utah in 1999 at 
$2420. For this analysis we assumed that the total monetary value was $2,000 per deer.  

• Removal and Disposal Costs of Deer Carcasses 

In Canada, carcass removal and disposal costs for animal carcasses were estimated at 
CAN $100 per deer (Sielecki 2004). In Pennsylvania, the average for deer carcass 
removal and disposal in a certified facility was $30.50 per deer for contractors and $52.46 
per deer for the Pennsylvania Department of Transportation in 2003-2004 (Pers. com. Jon 
Fleming, Pennsylvania Department of Transportation). For this analysis we assumed that 
the removal and disposal costs of animal carcasses to be $50 per deer.  

• Construction Costs 

Estimates of crossing structure and fence costs were prepared in the MOA by Skillings 
Connolly (2000).  In several cases, crossing structures did not occur where the MOA 
recommended, and alternate structures appeared in preliminary and final plans.  For these 
purposes, costs were estimated from measures of similar size and structure.  Fish 
passages and small mammal passages (those measuring approximately 4’ by 6’) were not 
included, nor were mitigation measures on side roads off US 93.  Bridges were 
considered multi-use, and not specifically to be installed for wildlife, so 1/3 of the total 
construction cost for bridges was considered.  The total cost for mitigation construction 
was then $6.1 million dollars.  This does not include upkeep or maintenance fees, or 
increases in construction costs.   

The total value of an average deer-vehicle collision was estimated at $7,890 from the above 
information.  The total construction costs relevant to deer crossing structures were approximately 
$6.1 million dollars.  Given a current average of 90 DVCs per year, and a given reduction in 
DVCs (from 35% to 100%), yearly savings (in millions of dollars) was calculated for varying 
times post-construction (Table 17).   
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The structures that will be built vary greatly in size, construction and maintenance needs.  Based 
on the MDT Road Design Manual (2000), mainline pipes (culverts) should have design lives of 
approximately 75 years.  WTI economic projections extend only 25 years, after which even the 
lowest detectable level of DVC reduction essentially pays for the construction costs of the 
mitigation structures.  Note this analysis relates only to expenses associated with deer-vehicle 
collisions; larger mammals such as moose and elk incur greater expenses per collision, therefore 
it would be expected that an even smaller reduction in collisions could pay of the expense of the 
mitigation sooner than what is reported above. 

7.2.1.3. Other Measures of Effectiveness 
Determining biological effectiveness is not always as simple as determining a minimum 
detectable effect.  If the focal species were threatened or endangered, population viability 
analyses could be run to determine population sizes and requirements for genetic exchange with 
adjacent populations.  However, US 93 highway is not considered to be a significant threat to the 
long-term viability of local deer populations, which are numerous enough to sustain hunting 
harvest.  To prevent US 93 from becoming a threat as the road is widened and traffic levels 
increase, biological effectiveness for deer can be inferred as long as two factors are met.  First, 
and most importantly, safe deer movement across the highway must not be impeded; rather, such 
movement should be encouraged.  Secondly, any reduction in DVCs could be considered 
effective as long as some level of movement across the highway is maintained.   

 

Table 17:  Reduction in DVCs and corresponding savings in millions of dollars considering an average of 90 
deer killed in the study area yearly and the average cost of 1 collision being $7,890.  Grey shaded areas 
represent savings exceeding construction costs. 

  SAVINGS 

% Reduction 
in DVCs 

# Fewer 
DVCs 1 year 5 years 10 years 15 years 20 years 25 years 

35% 31.5 $0.2 $1.2 $2.5 $3.7 $5.0 $6.2 
40% 36.0 $0.3 $1.4 $2.8 $4.3 $5.7 $7.1 
45% 40.5 $0.3 $1.6 $3.2 $4.8 $6.4 $8.0 
50% 45.0 $0.4 $1.8 $3.6 $5.3 $7.1 $8.9 
55% 49.5 $0.4 $2.0 $3.9 $5.9 $7.8 $9.8 
60% 54.0 $0.4 $2.1 $4.3 $6.4 $8.5 $10.7 
65% 58.5 $0.5 $2.3 $4.6 $6.9 $9.2 $11.5 
70% 63.0 $0.5 $2.5 $5.0 $7.5 $9.9 $12.4 
75% 67.5 $0.5 $2.7 $5.3 $8.0 $10.7 $13.3 
80% 72.0 $0.6 $2.8 $5.7 $8.5 $11.4 $14.2 
85% 76.5 $0.6 $3.0 $6.0 $9.1 $12.1 $15.1 
90% 81.0 $0.6 $3.2 $6.4 $9.6 $12.8 $16.0 
95% 85.5 $0.7 $3.4 $6.7 $10.1 $13.5 $16.9 
100% 90.0 $0.7 $3.6 $7.1 $10.7 $14.2 $17.8 
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Based on other data (see above), this analysis assumed that 5% of deer-vehicle collisions resulted 
in human injury.  Such injuries ranged in severity from $10,000 to $206,000 in hospital costs and 
lost work time (Biggs et al. 2004, Schwabe et al. 2002).  This translates to 4.5 human injuries of 
varying severity each year.  If DVCs were reduced by 35%, 3.0 human injuries would occur each 
year on average.  A 75% reduction in DVCs reduces the number of human injuries to 1.0 each 
year on average (Figure 26).   For this analysis, it was assumed that 0.05% of all deer-vehicle 
collisions would result in one human fatality.  This translates to one human fatality due to a DVC 
every 20-25 years.  A 35% reduction in DVCs reduces this to 1 fatality every 30-35 years.  A 
75% reduction in DVCs would reduce this further to 1 fatality every 85-90 years.   

7.2.2. Bear-Vehicle Collisions 
Quantifying measures of effectiveness for black bear ecology is more challenging compared to 
establishing MOEs for deer.  It is difficult to demonstrate statistical significance in situations 
where populations are small or dispersed (Taylor and Gerrodette 1993), but these are often the 
populations most in need of conservation attention.  Large-bodied carnivores tend to have larger 
home range sizes, and can be especially susceptible to habitat fragmentation (Proctor 2003, Noss 
et al. 1996).  Species with low population growth rates, like black and grizzly bears, are highly 
sensitive to survival of adult females (Heppell et al. 2000).  Often, the loss of just a few adult 
females can be the difference between a growing or declining black or grizzly bear population 
(Hebblewhite et al. 2003, Freedman et al. 2003, Kasworm et al. 1998). 

Given these concerns, promoting safe passageway across US 93 is especially important for black 
bears.  However, measuring change between pre and post-construction bear-vehicle collisions 
(BVCs), bear-highway crossings, and levels of genetic variability will be difficult.  Over 1995—
2005 (using data from MTFWP, MDT and MHP), the mean number of black bears killed by 
vehicles over the entire US 93 study area per year was 2.91 (95% C.I. = 1.15, 4.67).  These scant 
occurrences, and this wide variance, did not provide a dataset appropriate for power analyses.  In 
such a case, statistical significance regarding a decline in black bear collisions is not likely to be 
achieved.  
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Figure 26: Hypothetical estimated reduction in human injuries per year associated with different levels of 
reduction in deer-vehicle collisions along US 93.   
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The preferred approach to assessing effect and effectiveness of mitigation structures on 
decreasing black bear kills is to repeat the intensive study run by McCoy (2005).  McCoy used 
genetic methods to count a minimum of 83 individual black bears in the US 93 corridor in 2003 
and found 10 and 11 road killed black bears in 2002 and 2003, respectively.  The majority of 
these mortalities were sub-adult males, which have less effect on population growth rate than 
females.  Nonetheless, a closed black bear population (i.e., an isolated population with no 
immigration or emigration of bears) of 83 would have to grow at more than 14% a year to offset 
these mortalities in order to maintain a similar number of bears in the population over time.  It is 
theoretically possible for black bear populations to grow at 20% a year (Freedman et al. 2003), 
but this rate is exceptionally high, and realization of such a rate would occur only in ideal 
conditions without highway mortality, management mortality, hunting mortality, or competition 
with grizzly bears.   

Using these figures to consider the biological significance of road kill bear mortalities, if road 
kill rates similar to McCoy’s (2005) observations continue in combination with mortalities 
associated with management removals, hunting and conflicts with grizzly bears, a population 
decline could result, unless the population is bolstered by immigration of black bears from other 
populations or if the reproductive rates exceed a 14% increase a year.  With the goal of 
sustaining the black bear population, reducing black bear mortality due to road kill is a necessity, 
unless all other mortalities are eliminated, an unrealistic scenario.  With only 2 years of 
observations, the lack of degrees of freedom eliminates the ability to statistically compare 
preconstruction to post-construction road kill bear mortalities.  However, the assumption that a 
50% reduction in bear kills would benefit the population can be justified as a reasonable measure 
of effectiveness that could help sustain this population.  Therefore, if post-construction bear-
vehicle collision search efforts similar to McCoy (2005) find an average of 5 or less bear-vehicle 
collisions per year, assuming the population hasn’t plummeted and is not imperiled, the 
mitigation could be deemed effective with the knowledge that the reduced mortality will help 
sustain this population over time.  If post-construction bear counts appear to be significantly 
lower than preconstruction counts, it may be appropriate to set a measure of effectiveness for 
fewer black bear road kill mortalities since the biological implications of any road kill mortalities 
could have a significant additive effect on these population reductions, especially if any females 
are hit by vehicles.   

This is a simple and ultimately qualitative and subjective approach to establishing measures of 
effectiveness for black bears, but the basic logic behind this goal is reasonable and justifiable.  
More complex quantitative measures of effectiveness could be explored via population viability 
analyses and more intensive data collection to assess what other parameters may affect the bear 
population in order to understand how the reduction of road kill fits into a complex relationship 
of many variables that influence this population of black bears that reside in and around the US 
93 highway corridor.   

7.3. Habitat Connectivity:  Wildlife-Highway Crossing Post-Construction 
Monitoring 

For post-construction monitoring, WTI collaborated with the US 93 Technical Design Team to 
incorporate track beds both inside and just outside of each crossing structure as well as at the 
ends of the long sections of fencing and on the jump-outs.  Track beds outside crossing structures 
will provide data that are comparable to the preconstruction track bed data because the exposed 
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track beds are subject to environmental conditions that likely result in the loss of legible tracks if 
rain or wind obliterate the imprints, and can be compared to track observations from the 
sheltered track bed inside the crossing structure to determine average error rates to fine tune the 
preconstruction track observations.   

Theoretically, post-construction track beds inside the crossing structures will capture tracks of all 
deer and bear movements through crossing structures.  In combination with observations of deer 
movements around the ends of the fence, the track data will essentially “census” all movements 
from one side of the road to the other, with the exception of deer and bear that breach the fence 
and escape from the fenced right-of-way without using the jump-outs.  Total crossings measured 
via post-construction tracking methods will be compared to the estimated total preconstruction 
crossings extrapolated across the stretches of roads that will have contiguous fencing installed.  
Additionally, wildlife movements around the ends of the fences will be taken into account in 
conjunction with an assessment of post-construction deer-vehicle collisions when determining 
the effect of the mitigation measures.  Although these observations indicate deer are moving 
from one side of the road to the other, fence end crossings could result in hotspots of wildlife-
vehicle collisions at the ends of the fences.  

Power analyses indicated the ability to detect a 153% change in deer crossings and an 807% 
change in bear crossings after 3 years of post-construction study across the three study areas 
combined.  With 5 years of post-construction study, a change of 60% could be detected in deer 
crossings, and 318% could be detected in bear crossings.  This was using a two-sided hypothesis, 
assuming that wildlife crossings could increase due to the presence of safe crossing structures or 
decrease if deer and bear do not adapt and learn to use the crossing structures.   

It is possible that smaller changes in deer crossings may be detectable if the variance is reduced 
from what was observed in the preconstruction crossing estimates.  However, a 60% detectable 
reduction in deer crossings may be considered a biologically significant, negative impact, even 
for a population that is not imperiled or threatened.  Therefore, given the preconstruction power 
analyses results, WTI proposes that 1) no change or b) any increase in deer crossings be deemed 
a success; if a reduction in deer crossings is detected, the mitigation measures will not have 
achieved the desired effect of maintaining habitat connectivity for deer.  Five years of 
monitoring are required to measure this.       

Estimating changes in highway crossings by black bears will require more detailed attention due 
to low frequency and high variability in crossing rates as observed by the tracking index.  
McCoy (2005) used GPS collars (taking hourly fixes) to monitor black bear movements through 
the highway corridor and to quantify individual highway crossing rates and the proportion of 
collared black bears that crossed the highway.  Of the collared bears monitored in that study, 
McCoy (2005) found 187 highway crossings of US 93 by 10 of 18 collared bears (55%).  She 
also found that age, sex, and whether bears were habituated or food-conditioned contributed to 
observed highway crossings.  Again, WTI recommends that a companion study to McCoy (2005) 
be conducted after construction to measure post-mitigation bear movements to compare to 
McCoy’s (2005) preconstruction findings to infer effects of the mitigation.  Taking into account 
changes in the population (another metric to be measured post-construction via genetic hair 
sampling to determine a minimum number of bears in the study area), one measure of mitigation 
structure effectiveness may be if post-construction crossings are similar to preconstruction 
crossings.  Greater success could be inferred if crossing rates increase.   
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Habitat connectivity is vital for maintaining genetic flow between populations and preventing 
isolation.  Statistical assessment of genetic difference between black bear populations on either 
side of US 93 will also be challenged by low power to detect changes.  Although McCoy (2005) 
established a baseline heterzygosity (genetic variability), at the time of study, there were only 6 
locations (called microsatellites) that used to detect variability.  This, combined with the long 
generation time of black bears, will result in statistical difficulties to determine trends.  However, 
to determine effectiveness based on genetic data only, the “one migrant per generation” rule may 
be sufficient in many scenarios (Mills and Allendorf 1996).  For fluctuating populations or those 
violating the assumptions of Hardy-Weinberg equilibrium (i.e., population is not closed, mating 
is non-random, etc.), up to 10 animals may be needed to maintain current levels of genetic 
diversity (Vucetich and Waite 2000, Mills and Allendorf 1996).  Therefore, WTI recommends 
that one measure of effectiveness be set at a minimum of at least 10 different individual bears, 
including at least one female bear, successfully crossing US 93 annually after the road mitigation 
is installed.  However, the minimum amount of movement to maintain genetic viability is not 
necessarily enough for some metapopulations to persist (Akçakaya et al. 1999); therefore this 
measure of effectiveness must be interpreted with caution.   

Waiting for a period of time (at least 2-3 years) after the mitigation is installed to repeat the black 
bear study is advised to give bears time to acclimate to the mitigation.  Bear crossings are likely 
to decrease immediately after the construction as bears have yet to learn how to navigate through 
this new landscape with fencing and crossing structures.  After a few years, bears will likely have 
adjusted their travel routes and study results will be more representative of the long-term effects 
that the mitigation may have on this bear population.   

7.4. Post-Construction Photo-Monitoring Recommendations 
Photo monitoring of the crossing structures will be used to quantify wildlife movements through 
crossing structures and to estimate potential error rates of track bed observations, which may 
occur if numerous animals move through a structure and obliterate previous tracks.  
Additionally, photo monitoring can allow for identification of individual animals that may have 
unique marks or patterns on their coats (Karanth and Nichols 1998).  One animal crossing 100 
times is less desirable than 10 individuals crossing 10 times; photo monitoring may allow 
researchers to determine to what degree the data are influenced by repeated crossings by 
individual animals.   

Photo monitoring also is advantageous because species confirmation is more reliable than on 
track or sign only (Swann et al. 2004).  Photo monitoring would allow differentiation of mule 
deer and white-tailed deer, while tracking surveys cannot.  If remote cameras are carefully 
selected and placed, they ought not to alter animal behavior. 

Remote cameras are available with a wide variety of features and abilities, and careful selection 
of cameras is necessary to ensure that the data will be usable and meet the objectives.  For these 
purposes, the following criteria are most important: 

• Reliable time and date stamps captured on all photos; 
• Theft-resistance, as cameras will be in high-use areas; 
• Flash and sound that do not alter animal behavior; 
• Fast trigger time to capture quick-moving animals; 
• High storage capacity so that data are not lost between visits; 
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• Long battery life so that data are not lost between visits; and 
• High durability and weatherproofing so that units can be used for years. 

In the context of this project, digital cameras are preferable to 35mm film models for several 
reasons.  Digital cameras can store up to 1,500 images while 35mm cameras are limited to 36 
exposures.  Digital cameras store photos on re-usable memory cards, which can be downloaded 
onto a computer and catalogued without any additional processing costs, while 35mm cameras 
require film canisters and high development costs.  Price differences between comparable digital 
and 35mm units range from $50-$200.  The higher initial costs of digital cameras are quickly 
offset by their low maintenance costs, not having to purchase and develop film, and their 
expanded storage abilities.   

A number of available camera systems were researched based on the above criteria by 
interviewing five wildlife biologists who have employed various camera systems and reading 
web-logs and websites dedicated to game cameras and reviews by users.  The camera system that 
received the strongest recommendations from other researchers was the Reconyx digital camera.  
This system offers infrared flash, silent operation, very fast trigger time, long-battery life 
(although an upgrade to rechargeable batteries was recommended), quality weatherproofing, a 
wide range of operating temperatures (-20F to >100F), and easily modification to lock it securely 
and prevent theft.  This system comes with software that allows easy downloading, 
categorization and filing of a large number of photos, a very desirable feature for a long-term 
study.  Reconyx cameras are used by University of Montana and Dr. Anthony Clevenger in 
Banff National Park wildlife-highway research projects and predator exclusion studies.  These 
camera systems cost $1,199.99, and are offered at 10% discount with a purchase of 10 or more.   

Although fewer researchers supported the mid-range units, several received good reviews by on-
line web logs and websites devoted to game cameras.  The Cuddeback and Recon Talon are two 
models that are comparable in cost at $399 each.  The Cuddeback offers a faster trigger time, but 
does not have the IR flash.  The Recon Talon does have the IR flash, and its software may allow 
updates to have a faster trigger time.  A University of Montana researcher used the Recon 
cameras with good success, but noted that they did not perform as highly as the Reconyx 
cameras.  A Colorado lynx biologist used Cuddeback cameras, and was pleased with the unit 
except that it would occasionally fail in cold temperatures.  Both the Cuddeback and Recon use 
memory cards (up to 512mb) that allow fast and easy download of pictures onto a PC or laptop.   

An optimal photo monitoring sampling design would include using digital cameras in each 
wildlife crossing structure for the duration of the post-construction study.  Rotating cameras 
between crossing structures would result in less data gathered overall, and therefore higher 
variance and lower power to detect differences.  Further, rotating cameras could result in a 
seasonal bias in data collection, and would require more personnel time to move the cameras.  
WTI recommends using higher-quality digital cameras to ensure accurate results.  Using high-
quality cameras at all crossings may also allow field personnel to dedicate more time to track 
monitoring at the ends of the fences and on the jump-outs.   

 

7.5. Pellet Transect Population Monitoring 
Population monitoring is intended only to track trends in deer population numbers; therefore, 
there are no associated MOEs for this parameter.  However, for the method to yield effective 
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data that can be used to understand how population fluctuations may affect what is observed in 
the parameters of interest, post-construction monitoring is essential. 

It is important to monitor deer population trends to understand what changes in deer-vehicle 
collisions and highway crossings might be attributable to the mitigation versus changes in the 
population.  Unless there are adequate post-construction monitoring funds to conduct a mark-
resight population estimate study for deer, it is recommended that pellet transect monitoring be 
continued on an annual basis.  While recognized as a crude index, it can detect relative changes 
in the deer population over time, an important consideration when determining whether changes 
in deer-vehicle collisions or deer crossings are due to the mitigation or changes in the population.   

7.6. Traffic Monitoring 
Similar to population monitoring, defining an MOE for traffic levels is not appropriate.  It is 
expected that traffic levels will increase given that the reconstruction aims to increase traffic 
capacity.  Further, speeds may increase with the reconstructed road that includes passing lanes 
and wider shoulders.  Traffic levels and speeds may affect focal species movements, but with the 
introduction of measures that separate crossing movements from traffic, it is possible that the 
influence of this variable is reduced.  Continued traffic monitoring either using pneumatic tube 
traffic counters or using MDT automatic traffic recorder data is recommended throughout the 
post-construction monitoring study in order to assess this relationship.   

7.7. Recommendations for Crossing Structures on Fish Bearing Streams 
A generalized MOE for fish passage is recommended.  If post-construction monitoring reveals 
no leap or velocity barriers and fish passage is attained, it is suggested that the reconstruction of 
these culverts be considered effective.   

Monitoring new culvert installations will provide information about how these crossings 
maintain conditions that promote and ensure fish and other aquatic organism passage.  How new 
crossings perform over time, especially through a large flow event, will provide invaluable 
insight towards future design, construction and maintenance practices.  Monitoring of these 
structures can be accomplished in several ways.  Table 18 summarizes several monitoring 
options that exhibit a range of complexity, cost and effort.   
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The first monitoring scenario involves qualitative reporting of culvert performance based on 
standard inspections and maintenance by MDT personnel along roads.  This scenario does not 
include any additional effort beyond that which the MDT maintenance personnel already 
perform.   

The second monitoring scenario suggested above includes collection of basic geomorphic data 
that can be compared to the same metrics measured prior to reconstruction.  Monitoring should 
be performed at low flow, after each spring runoff cycle, on an annual basis at each crossing.  
Data collection should include consistent measurements of the downstream outlet area of each 
culvert (treatment reach) and a minimum of two areas in the natural stream outside the hydraulic 
influence of the culvert (control reaches).  Benchmarks on either side of the stream in all reaches 
should be constructed, and a stream cross section should be measured between these bench 
marks.  The performance of the culvert over time will be assessed by comparing the rate of 
geomorphic change from one year to the next between the control and treatment reaches. 

The third monitoring scenario includes collection of a larger suite of hydraulic, geomorphic and 
biological data.  Monitoring should be performed on an annual basis at each crossing when the 
flow allows easy and safe access to the stream and crossing.  Data collection should include 
hydraulic/geomorphic data and biological data including the same sampling methods as detailed 
in the second monitoring scenario.  Additionally, a longitudinal stream profile should be 
collected upstream and downstream of the culvert crossing.  Each reach for the longitudinal 
profile should extend a minimum of two culvert lengths.  Sediment samples following Wolman’s 
pebble count method should be collected in the upstream and downstream reaches.  The 
biological data set should include an annual mark-recapture assessment following the methods 
used in the preconstruction study.  The performance of the crossing over time will be assessed by 
comparing the suite of hydraulic/geomorphic data between reaches and by the results of the 
mark-recapture assessment.  These data will provide complementary information about the 
crossing performance over time. 

Table 18:  Potential post-construction monitoring scenarios to assess fish passage performance at newly 
constructed water passageways. 

Monitoring 
Scenario Activities Level of 

Effort 
Quality of 

Information 
Estimated Cost per 

monitoring year* 

1 
Standard inspections by 

MDT maintenance or 
equivalent crews 

Low Low 
Standard Operating 

Procedures (no 
additional cost) 

2 Hydraulic and geomorphic 
data Medium Medium to High $20,000 to $40,000 

annually 

3 Hydraulic, geomorphic, and 
biological data High High $40,000 to $80,000 

annually 

*Estimated cost based on two people monitoring at 30 crossing structures on the U.S. 93 corridor.   



US 93 Wildlife Mitigation Preconstruction Final Report Post Construction Monitoring 

Western Transportation Institute  Page 95 

7.8. Post-Construction Monitoring Schedule 
The collection of AVC data will occur throughout construction and after construction.  Other 
monitoring efforts will need to be initiated at an appropriate time after the mitigation is installed.  
Considerations should be given to when the collection of monitoring data will represent wildlife 
responses characteristic of what might be seen over the long term.  If sampling of some 
variables, such as wildlife crossing structure use, were to occur immediately after the 
construction, there may appear to be a lack of effectiveness given that animals may take some 
time to learn how to navigate across the landscape with new fencing and crossings.  However, if 
the resources are available to initiate wildlife crossing structure monitoring immediately after 
construction and continue regular monitoring for at least five years, it would be informative to 
see what the “learning curve” may be for wildlife to adapt to the mitigation.   

Because the US 93 project is being constructed in phases, monitoring may also need to be 
initiated in phases.  Appendix G provides an overview of the construction schedule, along with a 
proposed schedule for the various recommended post-construction monitoring methods.  In 
summary, the WTI recommends the following schedule for post-construction monitoring: 

• Continued, consistent AVC and road kill carcass removal reporting by Montana Highway 
Patrol and Montana Department of Transportation maintenance staffs throughout the 
construction and for at least 5 years post-construction; 

• Consider an initial analysis of effects of the mitigation on deer-vehicle collisions only 
after all reconstruction across the entire area (excluding the Ninepipes reconstruction 
section) have been completed for at least three years;   

• Annual pellet transect monitoring throughout construction and post-construction 
monitoring years to establish an index that will show long-term trends in the deer 
populations in the highway corridor; 

• As wildlife crossings are installed and completed, photo-monitor crossings to document 
what and how quickly different species of animals learn to use the structures in order to: 

o Pilot the camera equipment set-ups to ensure methods are fine-tuned for the long-
term monitoring and 

o Provide initial feedback to the public in an effort to be accountable to the 
inevitable queries regarding this high-profile project; 

• Once all structures and fencing are installed, step up monitoring efforts to include track 
bed monitoring to complement the photo-monitoring for at least 3 years; 

• At the earliest, repeat the fish passage hydraulic assessments one year after construction 
of these crossings is completed; 

• At the earliest, repeat the bear study two years after construction is completed in the three 
focal study areas (Evaro, Ravalli Curves, Ravalli Hill); 

• At the earliest, repeat the turtle study in the Ninepipes two years after that section has 
been completely reconstructed; 

• At the earliest, repeat the in-depth deer-vehicle collisions study to assess what road, 
mitigation, and landscape features influence deer-vehicle collisions after all sections of 
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the reconstruction (excluding the Ninepipes section) have been completed for five years, 
in order to be comparable to the preconstruction analyses and dataset; and 

• Monitor traffic speeds and volumes after construction is completed for each section for 
the same amount of time that monitoring of other parameters is occurring. 
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8. CONCLUSIONS 

The US 93 reconstruction project on the Flathead Indian Reservation in northwest Montana 
represents one of the most extensive wildlife-sensitive highway design efforts to occur in the 
continental United States.  The reconstruction will include installations of 42 fish and wildlife 
crossing structures and approximately 15 miles (24 km) of wildlife exclusion fencing for a total 
investment of over $9 million.  This report documents the success of using a context-sensitive 
approach to collaboratively redesign a rural highway that accommodates the needs and concerns 
of different institutions, cultures and priorities.  Further, this report introduces baseline field data 
collection methods and results that are being used to evaluate how the wildlife crossing 
structures and wildlife fencing affect animal-vehicle collisions (AVCs) and wildlife movements 
in a multiple-use rural landscape.  The preconstruction data summarized here, and in 
combination with complementary post-construction data, address the following goals of the 
evaluation study:   

• Determine what effect US 93 wildlife crossing structures and fencing have on the 
frequency of animal-vehicle collisions and successful animal highway crossings; 

• Document the design decision-making processes and lessons learned as a “case study”; 
and 

• Identify best management practices and further research. 

The ultimate value of the information in this report will be realized when the reconstruction is 
complete and post-construction field data is collected to comparatively assess the effect of the 
wildlife mitigation on the parameters of interest identified in the goals.  As a stand-alone 
document, this report provides an overview of important considerations related to locating, 
designing, and evaluating the effectiveness of wildlife crossings and exclusion fencing.  These 
issues are addressed via a literature review, case study and project history, summary and 
synthesis of field data collection efforts, overview of other relevant and repeatable field studies, 
and a discussion about the measures of effectiveness and post-construction data collection 
recommendations.    

8.1. Literature Review 
General conclusions from the literature review include: 

• Wildlife exclusion fencing is a promising method for improving driver safety and 
reducing AVCs; 

• Wildlife exclusion fencing in conjunction with wildlife under- and over-passes may 
restore, sustain, or even improve, habitat connectivity; 

• A combination of methods (e.g., road-kill locations, habitat evaluation, radio-telemetry 
monitoring, multiple-species monitoring) should be used to determine optimal locations 
for wildlife crossing structures; 

• A variety of methods can be used to conduct a successful field evaluations, including 
collision data, tracking beds, video monitoring, radio-telemetry,, DNA assignment 
testing, and fecal stress measures; and 
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• The need to conduct preconstruction as well as postconstruction data collection was 
apparent. 

The Literature Review focused on published papers addressing methods and considerations for 
locating, designing and evaluating the effectiveness of wildlife crossing structures and exclusion 
fencing.  Although numerous techniques have been applied in an attempt to reduce AVCs, 
wildlife fencing appears to have the most promise for improving driver safety; equally important, 
when appropriately designed and placed wildlife under- and overpasses are used in conjunction 
with wildlife fencing, habitat connectivity may be sustained, restored or improved for long-term 
sustainability of wildlife populations.   

Different species of wildlife prefer different characteristics that may be incorporated into passage 
structure designs and wildlife exclusion fencing further ensures animals will be prevented from 
crossing the road at-grade while simultaneously guiding or funneling wildlife movements to the 
crossing structures.  Several methods can be used to determine optimal locations for wildlife 
crossing structures; using a combination of these approaches in order to “cross check” outcomes 
and defend decisions to install wildlife mitigation on highway reconstruction projects is advised.   

Monitoring of wildlife passage systems is necessary for assessing effectiveness and to build 
understanding of and evidence for efficient and effective approaches to reducing animal-vehicle 
collisions and maintaining wildlife habitat connectivity across landscapes.  Steps for conducting 
field evaluations, including identified successful methods, such as collision data, tracking beds, 
video monitoring, radio monitoring of animal movements, DNA assignment testing, and fecal 
stress measures, were reviewed; the need to conduct more pre- and post-construction 
comparative studies was emphasized in the literature.   

8.2. The U.S. 93 Planning Process Case Study 
General conclusions from the U.S. 93 planning process include: 

• This level of wildlife-sensitive highway design effort is unprecedented in the continental 
U.S.; 

• A context-sensitive approach was vital for planning between the Tribes, the state, and the 
federal governments; and 

• The TDC provided cohesive efforts to steer the project and achieve consensus on areas of 
dispute. 

Researchers documented the US 93 reconstruction efforts as a case study to highlight the history 
of the project and its challenges, as well as the different points of view and approaches that 
shaped the planning and design process.  In the early 1980s, the Montana Department of 
Transportation (MDT), the Confederated Salish Kootenai Tribes (CSKT or “the Tribes”) and the 
Federal Highway Administration (FHWA) recognized the need to increase the level of service 
and safety for US 93 on the Reservation.  The three governments did not, however, initially 
agree on the design concepts for reconstructing the road.  After a long planning process, many 
challenges were overcome as stakeholders worked together to understand, respect and trust each 
other, ultimately a key to the success of this project.   

Stakeholders adopted a context-sensitive approach that considered the landscape, people, and 
cultural values in addition to safety and level of service.  Central to the approach was the concept 
that “The road is a visitor”:  not only should the highway be safe and accommodate increasing 
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traffic volumes, but US 93 should also respect and reflect the landscape and natural and cultural 
values of the Tribes.   

These concepts and philosophies were documented as design concepts that made up the tenets of 
a Memorandum of Agreement (MOA) that the three governments collaboratively followed 
through the design process.  A Technical Design Committee (TDC) was formed of members of 
the three governments to ensure that the design development process proceeded in accordance 
with the MOA.  This TDC worked closely and regularly to steer the project and resolve any 
disparities by working to achieve consensus by finding reasonable solutions that all three parties 
could agree upon.  The TDC guided the design details for the installation of the 42 fish and 
wildlife crossing structures and approximately 15 miles (24 km) of wildlife exclusion fencing. 

8.3. Preconstruction Data Collection 
General conclusions from the preconstruction monitoring include: 

• The average annual number of reported deer-vehicle collisions (DVCs) for US 93 
from Evaro to Polson during the 2002—2005 preconstruction years was 90 (95% 
confidence interval [C.I.] = 82, 98); 

• A 35% decline in DVCs will be detectable after 3 years of post-construction study, 
and a 22% decline after 5 years of study; 

• The mean number of black bears killed by vehicles from 1995—2005 on US 93 
between Evaro and Polson per year was 2.91 (95% C.I. = 1.15, 4.67); 

• With small sample sizes, there is little statistical power to detect changes in pre- and 
post-construction bear-vehicle collisions; 

• The estimated total number of deer crossings of US 93 between June and October 
2003—2005 in the areas that will receive wildlife fencing ranged from 1521 to 1932; 

• The estimated total black bear crossings in the same area ranged from 33 to 165; 

• The Evaro study area had significantly more deer pellet groups than the Ravalli 
Curves or Ravalli Hill study areas in both 2004 and 2005; 

• The black bear radio telemetry and DNA study indicated the highway may be a 
barrier to some segments of the black bear population, but it is not currently a barrier 
to gene flow; and 

• Each culvert was a partial fish passage barrier at certain times of year. 

The MOA also included a directive to evaluate the effect and effectiveness of the wildlife 
mitigation investments.  To meet this directive, the preconstruction monitoring study 
documented in this report was initiated in 2002 and post-construction monitoring would 
complement these efforts to comparatively analyze the effects of the wildlife crossings and 
fencing, with a specific focus on deer- and black bear-vehicle collisions and movements across 
the highway.   

Preconstruction field data collection efforts focused on deer and black bear movements in the 
Evaro, Ravalli Curves and Ravalli Hill areas where the longest continuous stretches of wildlife 
exclusion fencing and crossing structures are planned.  These data ought to be compared with 
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post-construction monitoring of wildlife movements through the wildlife crossings and around 
the ends of the exclusion fences in these specific study areas; additional information may be 
gleaned from post-construction monitoring of movements through all crossing structures across 
the entire length of the project to address how other configurations of crossings with shorter 
segments of fencing may affect wildlife movements and AVCs.  AVCs have been and continue 
to be reported across the entire US 93 corridor from Evaro to Polson, providing pre- and post-
construction data that could form the basis for analyzing the mitigation effects on driver safety 
and wildlife-vehicle mortalities.   

Researchers used several methods to establish the primary monitoring techniques applied to 
obtain baseline preconstruction deer and black bear behavioral and population data for the US 93 
highway corridor.  The documentation of quantity and location of AVCs were analyzed to 
understand how these data interacted with traffic activity patterns and volume, as well as to 
quantify statistical limitations of these datasets in order to determine appropriate measures of 
effectiveness and post-construction monitoring recommendations.  Sand track beds were used to 
randomly sub-sample wildlife movements within the road verge in the Evaro, Ravalli Curves and 
Ravalli Hill areas.  These observations provided representative observations of deer and bear 
crossings of the highway that were used to estimate total preconstruction crossing rates within 
the areas that will have the most extensive wildlife fencing.  Results for the focal species and 
parameters of interest (deer- and black bear-vehicle collisions and cross-highway movements) 
are summarized below: 

• Deer-vehicle collisions: 

o The average annual number of reported deer-vehicle collisions (DVCs) for US 93 
from Evaro to Polson during the 2002—2005 preconstruction years was 90 (95% 
confidence interval [C.I.] = 82, 98).  Based on these preconstruction data, it was 
determined that a 35% decline in DVCs may be detectable after 3 years of post-
construction study, and a 22% decline after 5 years of study;   

o The average annual number of DVCs reported in 2002—2005 for the 8.7 miles 
(14 km) of US 93 where wildlife fencing is proposed was 11.8 (95% C.I. = 4.6, 
18.9).  This equates to 1.4 deer killed per mile per year (95% C.I. = 0.5, 2.2).  
These data had high year-to-year variance and only large changes may be 
statistically detectable in the areas to be fenced; e.g., a 241% change in kills per 
mile may be detectable after 3 years of post-construction monitoring, while a 
151% change may be detectable after 5 years; 

o The annual average number of DVCs for the 44.9 miles (72.3 km) of US 93 that 
will not have wildlife fencing (including the Ninepipes section where 
reconstruction design plans have not yet been determined) was 78.3 (95% C.I. = 
74.5, 82.0).  This equates to 1.7 deer killed per mile per year (95% C.I. = 1.7, 1.8).  
With significantly more miles of road where no wildlife fencing will be installed, 
there was less variance in the annual reported DVCs outside the area that will 
have wildlife fencing such that smaller differences may be detectable in post-
construction study.  Outside the area that will be fenced, a 19% increase or 
decline in deer kills per mile would be detectable after 3 years of post-
construction study, while a 12% increase or decline would be detectable after 5 
years; and   
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o There were several “hotspots” of DVCs across the study area.  Two hotspots were 
identified at mile markers 33.6 and 34.5; both within 0.1 mile from where wildlife 
crossing structures will be installed, but the wildlife fencing extending from those 
structures will not cover those specific locations.  An unmitigated hotspot 
occurred at mile marker 7.4, and several other hotspots (mile markers 37.5, 37.7-
37.9, 39.8, and 45.6-45.8) occurred within the final section of US 93 within the 
Ninepipes National Wildlife Refuge on the Reservation which is planned for 
reconstruction upon the completion of a Supplemental Environmental Impact 
Statement. 

• Bear-vehicle collisions: 

o The mean number of black bears killed by vehicles from 1995—2005 on US 93 
between Evaro and Polson per year was 2.91 (95% C.I. = 1.15, 4.67).  This figure 
includes data from 2002 and 2003, when 8 and 9 black bear mortalities due to 
collisions with vehicles were reported for each of these years, respectively; these 
higher numbers of reports were likely a result of more intensive monitoring for a 
research study assessing black bear responses to US 93 prior to reconstruction.  
With small sample sizes, there is little statistical power to detect changes in pre- 
and post-construction bear-vehicle collisions; this result underscores the 
importance of repeating the black bear study post-construction in order to obtain 
more detailed data that would provide a better understanding of the effect of the 
mitigation on this focal species. 

• Cross-highway movements: 

o Sand track beds placed parallel to US 93 were used to sample wildlife movements 
across approximately 30% of three stretches of US 93 that will have extensive 
lengths of wildlife fencing and crossing structures.  Across 4027 m (2.5 miles) of 
track beds monitored from June through October in the focal study areas over 
three years (2003—2005), deer species were the most frequently observed tracks, 
with medium mammals (including skunks, raccoons, and rabbits/hares) and 
canines (including domestic dogs and coyotes) as the second- and third-most 
observed species and 

o Deer and black bear track observations classified as “crossings” were used to 
extrapolate and estimate total crossing activity that occurred along the stretches if 
US 93 planned for extensive fencing (approximately 3.2 km in Evaro, 5.9 km in 
Ravalli Curves, and 2.1 km in Ravalli Hill, a total of 11.2 km will be fenced to 
exclude wildlife and funnel them toward the crossing structures).  The estimated 
total number of deer that crossed US 93 between June and October 2003—2005 
in these areas prior to the installation of the fence ranged from 1521 to 1932 and 
the estimated total black bear crossings in the same area ranged from 33 to 165.   

While both the AVC and track bed data provided an index of wildlife population density and 
road-centric behavior patterns, pellet group transects were established to independently index 
local deer population densities in a one kilometer buffer zone around the highway in the three 
focal study areas.  Photographic monitoring at a railway underpass in the Evaro area documented 
what animals were using this passage to move under the existing highway and to understand the 
daily patterns of activity for deer and bear moving within the highway corridor.  Used separately, 
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these tools addressed specific questions regarding preconstruction roadside ecology.  Used 
together, these indices help integrate important demographical and behavioral information to 
understand the current effects of US 93.  This information would be critical in determining the 
effects of mitigation measures on deer and bear in post-construction years. 

Following that thread, it was noteworthy to mention the high variability observed in the 
preconstruction datasets, an anticipated phenomenon commonly seen in ecological studies where 
there is little to no control over parameters that may influence the focal parameters of interest, 
other than the focal treatment.  This important point underscores the need for extensive (at a 
minimum, three years) of post-construction monitoring if rigorous results are desired. 

In addition to the primary preconstruction data collection efforts described above, this report also 
documented and reviewed other recent, relevant preconstruction field research efforts.  Each of 
these studies (including research on black bears, western painted turtles, characteristics 
associated with the deer-vehicle collision occurrences, and hydraulic assessments of aquatic 
passage structures) provides an opportunity to repeat the research after mitigation is installed to 
comparatively assess the effects of the reconstruction and mitigation measures.  

Based on established methods for and characteristics of the primary preconstruction data 
collection, “measures of effectiveness” (MOEs) for the main parameters of interest in this 
evaluation study were outlined.  Discussion about the differences in effect versus effectiveness 
lead to suggested minimum MOE of a 35% reduction in deer-vehicle collisions (DVCs) based 
the smallest statistically-detectable change established via a power analysis using the 
preconstruction DVC data.  Other methods for defining effectiveness included conducting a 
simple cost-benefit analysis based the expense of the mitigation investments versus the potential 
monetary savings of reduced DVCs over time and subsequently reduced property damage, 
human injuries and fatalities, deer fatalities, and carcass removal burdens.  If the smallest 
detectable reduction in DVCs were to be achieved and sustained, the investment would be repaid 
within 25 years; greater reductions in DVCs can offset the costs of the mitigation over a shorter 
period of time.   

Determining appropriate MOEs for reductions in bear vehicle collisions were more challenging 
given that the primary data collection techniques (standard reporting of AVCs and track bed 
monitoring sub-sampling wildlife movements across US 93 in the three focal study areas) 
predictably yielded sample sizes too small to make statistical inferences.  Anticipating this 
situation, the preconstruction black bear study was undertaken to provide more in-depth 
preconstruction data to be compared to similar intensive black bear data collected after 
construction is completed.  If post-mitigation bear movements across the highway observed via 
the variety of metrics (e.g., tracking and photo monitoring at the crossing structures, GPS-collar 
movement monitoring and/or genetic sampling) document approximately the same level of 
crossing events as observed prior to the installation of the fencing and crossing structures, it is 
recommended that the mitigation be considered effective given that the preconstruction condition 
of US 93 does not appear to be a significant barrier to the passage of black bears.   

It was determined that a population growth rate of approximately 14% (a relatively high growth 
rate for slow-growing and reproducing species such as black bears) would theoretically offset the 
ten or eleven black bear road kills reported during the two-year intensive bear study, along with 
other additive sources of mortality.  Although immigration of other black bears into the area 
could reduce this requirement, it was proposed that reducing the number of road kill by half 
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might be considered the minimum threshold for defining effectiveness of the mitigation relative 
to reducing black bear mortalities, providing the population is not threatened by other significant 
sources of mortality.   

Specific considerations for post-construction monitoring were recommended.  It is critical that 
continued, consistent AVC and road kill carcass removal reporting by Montana Highway Patrol 
and Montana Department of Transportation maintenance staffs occur throughout the construction 
and for at least 5 years post-construction.  After reconstruction across the entire area (excluding 
the Ninepipes reconstruction section) has been completed, initial analyses of effects of the 
mitigation on DVCs should not be considered until after a minimum of three years (more ideally 
five years) has passed to provide a sample size similar to the preconstruction DVC dataset.  Post-
construction wildlife movements through the wildlife crossing structures, at gaps in the wildlife 
fencing, and at the wildlife exclusion fence ends should be monitored using a combination of 
sand tracking beds in combination with remote-trigger IR photo cameras to quantify the accuracy 
of track beds was recommended to improve the overall confidence in the pre-post comparisons 
of the track bed data.   

Monitoring other parameters that can affect the interpretation of the observed outcomes should 
be accommodated in the post-construction monitoring plan as well.  Annual pellet transect 
monitoring would be important to understanding trends in the deer population that may affect the 
observed DVCs and use of the crossing structures.  Monitoring traffic to analyze impact on 
wildlife crossing behavior would help further understand how such variables may influence 
wildlife responses to the mitigation.   

8.4. Recommendations 
A general summary of recommendations includes: 

• The importance of at least 3, and preferably 5 or more, years of post construction data 
collection; 

• Timing of data collection relative to construction phase completion is important, and at 
least 3 years of monitoring should occur after the last phase is completed; 

• Photo monitoring is recommended to gain insights into activity patterns and to validate 
the tracking indices; and 

• Repeating the wildlife studies from the preconstruction years (black bear movements, fish 
passage, western painted turtle mortality and movements, and characteristics contributing 
to DVCs) is necessary to understanding the effects of construction. 

As mentioned previously, variability revealed in the preconstruction datasets illustrates the need 
for a bare minimum of three years of post-construction data collection from the time the 
mitigation installation is complete within a given area; ultimately, five or more years from the 
conclusion of construction would be better.  Given that the eight reconstruction segments are 
being completed in phases, the scheduling of post-construction monitoring efforts may be 
gradually increased as each area is finished, but it is recommended that there be at east 3 years of 
post-construction monitoring after the last segment (excluding the Ninepipes area) is completed.  
Further, the post-construction monitoring schedule should consider the biotic and abiotic 
conditions that evolve after construction is completed, vegetation recolonizes the disturbed areas, 
and wildlife adapt to their new landscape with fencing and crossings that will affect their 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Conclusions 

Western Transportation Institute  Page 104 

navigation, movements and behaviors.  During the period when an increasing number of 
mitigation measures are finished but others are either underway or planned to begin, photo-
monitoring could begin at the completed wildlife crossings to document what and how quickly 
different species of animals use the structures.  This exercise would pilot the camera equipment 
set-ups to ensure methods are fine-tuned for the more intensive long-term monitoring efforts.  
Further, these photos would provide initial feedback to the stakeholders and public before the 
more quantitative data can be reported on after several years of more extensive post-construction 
data collection.  Once all structures and fencing are installed, it is recommended that the more 
intensive track bed monitoring be used to complement the photo-monitoring, which would then 
initiate the beginning of the intensive monitoring efforts that should be continued for a minimum 
of three years.     

Repeating the other intensive field study efforts post-construction would provide additional 
focused data to document the effects of the mitigation on black bear, fish passage, western 
painted turtles and characteristics that contribute to DVCs in the US 93 corridor.  Other than 
repeating the hydraulic assessments, which could be done one year after construction is 
completed at those particular sites, the wildlife studies should not begin until at least two years 
(preferably more) post-construction have passed in the study areas where these projects would be 
replicated.   

Based on the pre- and post-construction comparative analyses, lessons learned and best 
management practices will be used to guide other institutions considering incorporating wildlife 
crossing structures and mitigation measures in future construction projects.  Due to the myriad 
sources of unquantifiable variation in the environment, several years of committed post-
construction monitoring must be employed to meet these goals of the evaluation study.  The US 
93 context-sensitive approach to redesigning a road that fits with the surrounding physical, 
natural, and cultural landscapes is establishing a higher standard for highway reconstruction 
efforts; with numerous entities interested in this high-profile reconstruction efforts outcomes, the 
analysis of the pre- and post-construction data and case study will provide insights and 
accountability with regards to the investments dedicated to improving driver safety and reducing 
impacts on wildlife.   
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10.  APPENDIX A:  WILDLIFE MITIGATION DESIGN GUIDANCE 

 
Figure A-1: Fencing typical details provided to US 93 design consultants (Jones and Jones 2002b) 
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Figure A-2: Fencing typical details provided to US 93 design consultants (Jones and Jones 2002b)  
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Figure A-3: Fencing typical details provided to US 93 design consultants (Jones and Jones 2002b) 
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Figure A-4: Fencing typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-5:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-6:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-7:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-8:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-9:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-10:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-11:  Wildlife jump-out typical details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure A-12:  Fencing placement and wildlife guard typical details provided to US 93 design consultants (Jones and Jones 2002b) 
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Figure A-13:  Fencing placement and wildlife guard typical details provided to US 93 design consultants (Jones and Jones 2002b) 
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11.  APPENDIX B:  MONITORING FEATURES DESIGN DETAILS 

 

 
Figure B-1: Remote-trigger camera mount typical design details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure B-2: Remote-trigger camera mount typical design details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure B-3:  Tracking bed design details provided to US 93 design consultants (Jones and Jones 2002b). 
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Figure B-4:  Tracking bed design details provided to US 93 design consultants (Jones and Jones 2002b). 
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12.  APPENDIX C:   
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EXECUTIVE SUMMARY 

Over the coming years US Highway 93 (US 93) will be reconstructed on the Flathead Indian 
Reservation between Evaro and Polson, Montana. The reconstruction will include the installation 
of wildlife crossing structures and fencing.   In December 2003, it was proposed that two of the 
three areas (Evaro and Ravalli Hill) may have less wildlife fencing than originally planned.   

The Western Transportation Institute has prepared this report to help the US 93 Technical Design 
Committee (TDC) make an informed decision with regard to how the changes in fencing may 
affect the goals of the wildlife mitigation and the evaluation study.  This report summarizes 
recommendations regarding fencing design details.  Recommendations are based on the synthesis 
of the field data collected thus far, relevant literature and prior experience with fencing issues as 
they relate to the goals of reducing animal-vehicle collisions and maintaining habitat 
connectivity.  WTI also addresses the effects that the fencing changes may impose on the 
evaluation study design.   

WTI has produced this report to complement the specific fencing recommendations drafted by 
Dale Becker, Confederated Salish and Kootenai Wildlife Biologist.  WTI is providing the TDC 
with the best available data and information regarding the effectiveness of wildlife mitigation.  
WTI does not claim to have incorporated all issues that the TDC will have to consider balancing 
with the goals of the mitigation, although issues that may affect the mitigation success have been 
addressed.  WTI respectively submits these considerations to aide the TDC with making 
informed decisions.   

Impact of Proposal on Animal Vehicle Collisions and Animal Crossings 
WTI documented and analyzed available data on AVCs and animal crossings detected in sand 
track beds along US 93 to identify potential effects of proposed fencing changes in the Ravalli 
Hill and Evaro areas as they relate to the goals of the mitigation efforts.  In the Ravalli Hill area, 
it does not appear that decreasing the fencing at the north end of this area will have major 
implications in terms of AVCs. However, the following recommendations are proposed for the 
rest of Ravalli Hill to limit AVCs: 

• do not shorten the fence at the south end of Ravalli Hill; keep the original southern fence 
end that extends down to the MT 200 intersection; and 

• extend the north end of the fence near Ravalli Hill Wildlife Crossing #2 further (300-500 
meters) than proposed in December 2003. 

In the Evaro area, the elimination of wildlife fencing from Whispering Pines Road south to the 
reservation border is concerning relative to reducing AVCs.  The authors have specific concerns 
about the area just north of the Reservation boundary where tracking bed data show relatively 
high numbers of black bear and deer crossings.  The authors are also concerned about numerous 
black bear AVCs at the northern end of the Evaro study area, near East Fork of Finley Creek, 
some of which have recently occurred north of the original fencing proposal’s northern 
termination point.   

Fencing from Whispering Pines Road to the Reservation border or from the Schley Homesites 
northward may not be favored for a variety of reasons; however, the authors recommend the 
TDC take a hard look at alternative mitigation measures for this stretch.  The authors list and 
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describe other mitigation measures for consideration in “Alternatives to Wildlife Exclusion 
Fencing.” 

Impact of Proposal on Wildlife Monitoring Methods 
WTI has been documenting wildlife crossings of US 93 through the monitoring of 62 tracking 
beds throughout summer and autumn 2003.  These beds were located in areas that were planned 
to have the longest sections wildlife fencing with crossing structures.  The tracking beds are used 
to obtain an estimate of preconstruction animal crossing rates. This estimate will be compared to 
post-construction crossing measurements of animal movements through the crossing structures, 
to quantify possible changes in habitat connectivity.  The sample size of 62 beds was determined 
based on a power analysis conducted with similar crossing rate data for deer from another study. 
With the proposal to reduce the wildlife fencing lengths in the Evaro and Ravalli Hill areas, 20 of 
the 62 tracking beds are now in areas that will not have wildlife fencing.  These 20 tracking beds 
can no longer be used to estimate the number of wildlife crossings which reduces the sample size 
of the study by 32%.  

A new power analysis was conducted using the study’s 2003 deer crossing observations to assess 
the impact that the fencing changes impose on the monitoring of the remaining 42 tracking beds.  
The results indicated that the sample size reduction does not substantially affect the ability to 
detect an overall difference in deer crossings before and after construction. However, if one is 
not only interested in a potential change in deer crossings in the three areas combined, but also in 
a potential change in deer crossings in the individual study areas, the authors reach a different 
conclusion, particularly for Ravalli Hill. 

WTI learned there have been further changes in the fencing plan and an additional 5 beds will be 
lost in the northern end of Evaro. This is unlikely to dramatically change the conclusions; 
therefore the decision was made to not conduct a new power analyses. 

Fencing design considerations and details 
The purpose of the wildlife exclusion fencing is two-fold: to funnel animals toward crossing 
structures and to prevent animals accessing the road where collisions can occur.  No wildlife 
exclusion fencing design has been found to be 100% effective and completely impermeable to all 
animal species; however, several techniques have been used to deter animals from accessing the 
area between the fences.  For those animals that breach the fence and are trapped on the right-of-
way between the fences, there are methods that can expedite the animals’ exit from this unsafe 
situation. 

Fence end treatments 
Fence end treatments can limit the numbers of animals becoming trapped between the fences.  
Fence end treatments are typically applied on the right-of-way, extending from the pavement to 
the last fence post where the wing fencing angles away from the road.  Thus far, the TDC has 
concluded that current fence end treatment designs (cattle or wildlife guards, electric fence, 
cobbles) are not sufficiently safe for motorists, pedestrians and cyclists that travel along the road 
or in the right-of-way.   

With no other alternatives proposed, there will be no fence end treatments to prevent animals 
from accessing the right-of-way between the wildlife exclusion fencing.  Without fence end 
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treatments, the effectiveness of the fencing will be reduced as animals will not be deterred 
from accessing the right of way between the fences.  If there are numerous incidents of 
animals becoming trapped between the fences, animal-vehicle collision rates may increase.   

Treatments for access points or fence gaps  
Access roads result in openings in the wildlife fencing. Without additional mitigation measures 
for those openings, animals have access to the right-of-way and the road. This jeopardizes the 
effectiveness of all other mitigation measures (i.e. the wildlife fencing and wildlife crossing 
structures), both with regard to animal-vehicle collisions and providing animals with safe 
crossing locations.  The authors reviewed the following options for the TDC’s consideration:  

No additional measures:  The effectiveness of the wildlife fencing and wildlife crossing 
structures with regard to animal-vehicle collisions could be reduced from about 96% to less than 
40%. 

Mitigation measures that discourage animals from crossing: 

• Gates:  Access points that are infrequently used by only one or several people or official 
organizations could be gated (preferably with a lock).  This could potentially result in a 
barrier that is close to 100% effective, similar to having no gaps in the wildlife fencing;  

• Cattle guards or wildlife grates:  The literature on the effectiveness of cattle guards as a 
means to deter wildlife movements is limited with varying conclusions.  Based on the 
authors’ literature review, bridge grating could reduce key deer access to feed by 75-
99.5%, depending on the design of the grates. Others have found that deer will pass over 
cattle guards and have deemed this measure ineffective.  Despite these conflicting results, 
the authors recommend that the TDC consider modified bridge grating or cattle guards 
at gaps in the wildlife fencing.  Modified bridge grating or cattle guards should be 
combined with jump-outs on either side of the road to provide an escape for animals 
that do succeed in crossing modified bridge grating or cattle guards. Modified bridge 
grating could potentially result in a barrier that is 99% effective, similar to having no 
gaps in the wildlife fencing. 

Mitigation measures that promote animals to cross: 

• Crosswalks:  If there are two access roads directly opposite of each other, one may 
choose not to install barriers, but to promote animals to cross at that location.  If there is 
only one access road, then one may choose to simply create a gap in the wildlife fencing 
on the other side of the road.  If these gaps are combined with jump-outs and unique 
signing to warn drivers that animals may cross at that particular location, similar to 
pedestrian crossings, animal-vehicle collisions may be reduced by potentially about 40% 
(compared to 96% for wildlife fencing combined with wildlife crossing structures).  

• Crosswalks combined with animal-detection & driver warning systems: See above. 
If the crosswalks and jump-outs are combined with an animal-detection and driver 
warning system, the number of animal-vehicle collisions could potentially be reduced by 
about 80% (compared to 96% for continuous wildlife fencing combined with wildlife 
crossing structures). 

Similar to fence end treatments, if no additional mitigation measures are applied at gaps in the 
wildlife fencing, the effectiveness of the wildlife fencing will be reduced, and the return on the 
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investments in wildlife fencing and crossing structures will be jeopardized. It is the author’s 
recommendation that modified bridge grates are installed at gaps in the fencing, perhaps even 
at (locked) gates. This measure is potentially 99% effective. If modified bridge grates are not 
an option, then it is recommended that openings are placed on both sides of the road, in 
combination with an animal-detection and driver warning system (potentially 80% effective).  
The authors strongly caution the TDC against having gaps without additional mitigation 
measures.  

Escape routes 
Escape routes allow animals to exit the right of way if they are caught between wildlife fencing 
along the road.  It is important to have escape routes, with or without fence end or gap treatments 
and such escape routes are especially important if there is no barrier at fence ends or at gaps in 
the wildlife fencing.   

In Banff National Park, one-way gates were unsuccessful as elk learned how to move through 
these in both directions.  The solution to this issue, in areas where there were no jump outs, was 
to install gates that rangers would open in order to haze animals off the right of way.   

The current plan is to install jump outs where the fencing changes angle to funnel in to the 
wildlife crossing structures.  The authors recommend installing additional jump-outs, spacing the 
jump outs at quarter mile intervals along the first mile of fencing from each fence end or fence 
gap.  In other fenced areas that have less deer road kill and that are not near the end of the fence, 
jump outs may be placed at half mile intervals (800 m).   

Deterring fence climbers and burrowers 
Specific strategies to discourage wildlife from climbing over or digging under the fence include: 

• provide a 90 degree barbed wire outrigger (i.e. overhang) that extends out ~3 feet;   
• use finer mesh fence to prevent bears from getting their feet in the mesh openings to use 

as a step (they climb the fence using mesh openings just like humans would);  
• use metal poles instead of wooden poles, or design a treatment or a pole that discourages 

black bears from climbing the wooden poles; and   
• attach a skirt of smaller-meshed fencing that extends from the exclusion fencing to bury 

in the ground.  
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Alternatives to wildlife exclusion fencing  
While the standard page wire wildlife exclusion fencing is considered the most effective means 
to reduce AVCs, alternatives are summarized below for the TDCs consideration.   

Electric fencing alternative 
When used to exclude deer from airports, electric fence was shown to be 80% effective.  Success 
rate may be reduced if (1) maintenance was inconsistent; (2) lines were short-circuited by weed 
growth or snow cover; or (3) when deer are highly motivated to cross the fence.    

At the December 2003 US 93 Technical Design Committee (TDC) meeting, the group discussed 
installing ElectroBraid fencing in selected areas, in place of the wildlife exclusion fencing.  
Richard Lampman, an ElectroBraid representative, has met with WTI and MDT and has offered 
a trial of ElectroBraid at no cost, with the agreement that if satisfied, then MDT purchases the 
fence.   

If the TDC supports installing this alternative fencing, WTI would like to evaluate the 
Electrobraid fencing with regard to the following criteria: 

• Effectiveness: what percentages of animals (specifically deer and black bear) that 
approach the electric fence are effectively repelled or breach the fence line? Standard 
wildlife fencing would be used as a control. 

• Costs for operation (e.g. electricity) and maintenance (e.g. fence repairs).  Standard 
wildlife fencing would be used as a control. 

Signage / Driver warning techniques 
Fencing attempts to modify animal behavior and movements; signage attempts to modify driver 
behavior.  It has been shown that the static wildlife silhouette warning signs are ineffective at 
reducing animal-vehicle collisions.  The authors believe signs need to be applied in such a 
manner to impress upon the drivers to understand the message and drive more cautiously.  The 
following measures may be used to warn drivers of potential animal-vehicle conflicts.  

• Speed reductions:  Reduction in speed provides drivers with more time to see and 
respond to hazards and increase their breaking distance.  This logical premise has not 
been extensively studied in relation to animal-vehicle collisions but there are data that 
support this idea.  If drivers could be impressed upon to obey speed reductions (dynamic 
signs that show the driver their actual speed; additional enforcement of posted lower 
speed limits), there is a chance that AVCs will be reduced.   

• Animal-detection/driver warning systems:  Animal-detection/driver warning systems 
detect animals approaching the road and then activate a sign to warn drivers that a large 
animal is on or near the road at that time.  Animal-detection systems in Switzerland led to 
80% reduction in ungulate - vehicle collisions. Used in combination with fencing, 
detection sections can be installed at the access roads to warn drivers that animals or 
vehicles may be entering the road so that drivers accessing the highway do not trigger the 
system.  There are numerous technologies used to detect animals and the most 
appropriate system should be selected to fit the specific situation.  If the TDC opts for 



US 93 Wildlife Mitigation Preconstruction Synthesis Final Report Appendix C 

Western Transportation Institute  Page 143 

this alternative, WTI would be pleased to work on this particular aspect of mitigation 
design, installation, maintenance, and monitoring its reliability and effectiveness.   

• Pavement markings:  Another potential alternative is to apply reflective strips that are 
used to mark the stripes on the road (white and yellow) in such a way that when a large 
animal enters the road, the animal's body simply blocks some of the reflectors so that 
drivers see a break in the linear pattern of reflected light and then slow down and proceed 
with increased vigilance.  To date there are no hard data on the effectiveness of this 
mitigation measure, but considering the minimal investment required, it may be worth 
evaluating this technique.  WTI is beginning a review of pavement markers and may be 
able to provide general technical advice on the topic.   

Monitoring 
The two main objectives for the monitoring study are to quantify pre- and post-construction 
AVCs and animals crossing US 93.  WTI has worked with the TDC on the design specifications 
for tracking beds both inside and outside the crossing structures, as well as brackets for mounting 
cameras to monitor activities at the crossing structures.  In addition, WTI would like the 
following design details incorporated into the reconstruction plans:   

• To document potential “end run” wildlife movements, WTI would like 50 meter long 
sand tracking beds installed at fence ends, parallel to the road;   

• WTI would also like sand tracking beds perpendicular to the road and extending to the 
post where the wing fence section angles away from the road to the pavement and on 
either side of access road gaps.  Data from these track beds will help WTI estimate the 
numbers and types of animals that may be getting trapped between the fences; and   

• Sand tracking beds on top of and at the base of each jump out will allow WTI to monitor 
which wildlife species are using the jump outs and if wildlife may be approaching and 
jumping in to the right-of-way via these breaks in the fencing.   

In summary, shortening the fencing affects WTI’s ability to evaluate the effectiveness of the 
mitigation as noted below:   

• Despite the fact that shortening wildlife fencing in Evaro and Ravalli Hill will reduce the 
tracking bed sample size from 62 to 42, WTI will still be able to sufficiently detect 
changes in deer (mule and white-tailed) crossings before and after construction. With a 
very recent (February 2004) proposal for additional shortening of the fence at the north 
side of Evaro, the sample size is reduced to 37. A dramatic change in conclusions was not 
expected; therefore, a new power analyses was not conducted; 

• If similar power analysis is to be obtained for other species, the authors would have to 
restore the sample size, perhaps to much more than 62 track beds;  

• The power analysis for deer crossings is maintained for the three areas combined (Evaro, 
Ravalli Curves and Ravalli Hill). However, the power for the individual areas or Evaro 
and Ravalli Hill are severely affected. As a consequence WTI cannot expect to analyze 
the effectiveness of the mitigation measures for each area individually, nor can the 
effectiveness between these areas be compared. WTI can only analyze this for the three 
areas combined; 
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• WTI will discontinue preconstruction animal crossing track bed monitoring efforts in the 
areas that have continuous fencing for less than 1500 m in road length (i.e. within the 
Evaro, Ravalli Curves and Ravalli Hill areas); 

• WTI will continue our preconstruction monitoring at the remaining fenced areas of 
Evaro, Ravalli Curves and Ravalli Hill that have fencing for at least 1500 m; and   

• The resources that would have been applied to tracking the 20 beds that will no longer be 
included in the monitoring effort will be rebudgeted for unexpected events, such as 
tracking bed maintenance (grading to loosen sand media after winter compaction, 
weeding/spraying). 

Final Summary of Fencing Design Details 
Wildlife exclusion fencing effectiveness increases when the chances of animals breaching the 
fence are minimized.  There are mitigation options to decrease animals entering the right-of way 
and becoming trapped between the fences.  Applying mitigation at the gaps in the fence and 
providing escape routes will be critical on this project.  In addition, maintenance is an important 
factor to keeping animals outside the right of way.   

Continuous wildlife fencing in combination with wildlife crossing structures on controlled access 
highways has been shown to reduce ungulate-vehicle collisions by 96%.  In a decreasing 
continuum from this “ideal” situation, animal-detection/driver warning systems in combination 
with fencing have been shown to reduce animal-vehicle collisions by 80% while “wildlife 
crosswalks” with unique signage only reduced ungulate vehicle collisions by about 40%.   

Deterring animals from entering gaps by using cattle guards or modified bridge grates across the 
gaps has seen varying results, from 99.5% to 75% exclusion for Key deer approaching two 
different grate patterns, to some studies claiming that cattle guards are ineffective for deer 
exclusion.  Following this logical continuum, openings with no mitigation to deter animal 
movements are likely to be even less effective.  Combinations of these techniques may increase 
effectiveness beyond the effectiveness of their individual applications. To maximize the wildlife 
mitigation investments, WTI stresses that the TDC seriously consider additional mitigation 
measures at the gaps in the wildlife fencing with cattle guards or modified bridge grates.  If 
these are not an option, gaps on either side of the road in combination with animal-detection 
and driver warning systems are recommended. In addition, wildlife fences need to be designed 
with adequate jump outs and escape routes.   

The US 93 reconstruction project is in the unique position to pioneer the way for future 
mitigation projects that must accommodate numerous access points through wildlife fencing.  
Given the number of gaps in the fence on this project, it is possible to install various mitigation 
measures deemed appropriate and monitor each for effectiveness.  Measures that do not meet the 
performance standards that are recommended may need to be replaced in the future.  This 
approach can be difficult to budget for, but is worth consideration.   
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INTRODUCTION 

Over the coming years US Highway 93 (US 93) will be reconstructed on the Flathead Indian 
Reservation, between Evaro and Polson, Montana. The reconstruction will include the 
installation of wildlife crossing structures and wildlife fencing that limits animals’ access to the 
road.  The goals of this mitigation are to increase driver safety by reducing animal-vehicle 
collisions and provide habitat connectivity for wildlife to move safely under or over the road.  

The Western Transportation Institute (WTI) at Montana State University is evaluating the 
effectiveness of these wildlife crossing structures and fencing, focusing on deer (white-tailed 
deer and mule deer combined) and black bears and two main parameters: 1. animal-vehicle 
collision (AVC) rates (safety); and 2. animal movements across the road (habitat connectivity).  
The evaluation research methods have been designed to compare animal crossings and road kill 
rates before and after the reconstruction.  Road kill data have been and continue to be collected 
by MDT maintenance staff and these data will be used for the evaluation.  After a pilot study in 
winter 2002-2003, WTI moved forward with a study design that will yield comparable pre- and 
post-construction animal crossing data.  The preconstruction sampling regime is based on sub-
sampling animal crossings of US 93 in areas that are planned to have long sections of wildlife 
fencing.   

In December 2003, it was proposed to the US 93 Technical Design Committee that two of the 
three areas (Evaro and Ravalli Hill) have less wildlife fencing than originally planned.  Because 
this proposal departs from the US 03 Memorandum of Agreement, it will be important for the 
Technical Design Committee (TDC) to make an informed decision with regard to how this 
proposal may affect the goals of the wildlife mitigation and the evaluation study.   

This report summarizes AVC data, preconstruction crossing data, and concerns and 
recommendations regarding fencing design details.  In addition, the report also addresses the 
effects that the fencing changes may impose on the evaluation study design.  Recommendations 
in this report are based on the synthesis of the field data collected thus far, relevant literature and 
prior experience with fencing issues as they relate to the goals of reducing animal-vehicle 
collisions and maintaining habitat connectivity.  Through discussions with Dale Becker, 
Confederated Salish and Kootenai Wildlife Biologist, and Pat Basting, Montana Department of 
Transportation Missoula District Biologist, limitations of some applications in the US 93 
environment are integrated, and provide logic for our final recommendations.  Dale Becker is 
providing specific recommendations relative to the stationing in a separate report.   

One final consideration for readers of this report:  WTI is providing the TDC with the best 
available data and information regarding the effectiveness of wildlife mitigation.  The authors do 
not claim to have incorporated all the non-biological issues that the TDC will have to consider 
balancing with the goals of the mitigation, although issues that may affect the mitigation success 
are addressed.  WTI would like to note that the current contract to collect preconstruction data 
for the evaluation of these mitigation measures does not include producing this paper; however, 
the authors are pleased to objectively report on this topic to the TDC.  WTI respectively submits 
these considerations to aide the TDC with making informed decisions.   
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PRECONSTRUCTION ANIMAL-VEHICLE COLLISIONS AND ANIMAL 
CROSSINGS OF US 93 RELATIVE TO WILDLIFE FENCING PLANS 

A summary of available animal-vehicle collision and crossing data from the Evaro and Ravalli 
Hill areas as they relate to the goals of the mitigation efforts are noted below.  Following the 
review of the existing data, potential effects for consideration are outlined regarding proposed 
fencing changes.  This report does not discuss the Ravalli Curves wildlife mitigation area since 
there are no proposed changes for Ravalli Curves.   

Animal-vehicle collisions  
One of the goals of the evaluation of the wildlife mitigation is to compare preconstruction 
animal-vehicle collisions (AVCs) to post-construction AVC occurrences.  Given US 93’s safety 
record, it was felt the amount of time that field observers would have to spend surveying the 
corridor for road killed animals exposed them to a high safety risk.   Also, such a survey requires 
a driver, an observer, a vehicle and gas, and with a limited budget other evaluation tasks, such as 
quantifying animal crossings before construction would be a better allocation.  After careful 
thought, WTI opted to work with AVC monitoring data collected by Montana Department of 
Transportation’s (MDT).  

Based on data provided by the MDT Safety Bureau, between 1992 and 2002, MDT Maintenance 
crews and Montana Highway Patrol (MHP) recorded a total of 279 AVC and/or road kill 
occurrences on US 93 between Evaro and Polson (for this report, “animal-vehicle collisions” and 
“road kill” are synonymous).  The 2003 data were incomplete at the time this report was drafted.  
Figure C-1 displays the annual AVC reports from 1992-2002.   

Data is used cautiously for several reasons.  First, these data were collected opportunistically 
rather than systematically and therefore are not statistically reliable.  Second, the database is a 
combination of two data sources; despite efforts to eliminate double counts, it may not be 
obvious that a record is a repeat of a single occurrence (e.g., if MHP records an incident, then 
MDT maintenance picks up the carcass at a later date with a slightly different odometer reading, 
the data may not appear to be duplicate information and could be double counted).     

Apparent increases in AVC reports seen in Figure C-1 could be due to an actual increase AVCs 
or may be a result of indistinguishable double counts.  It may also be due to inconsistencies in 
reporting efforts.  For example, MDT formalized the collection of these data in 1998, whereas 
prior to 1998 there were no initiatives to formally collect these data.  The jump in reporting in 
2002 may be due to WTI emphasizing the importance of these data to MDT maintenance staff 
that remove carcasses from US 93; WTI requested staff not to change their level of effort but this 
may have occurred inadvertently with increased awareness of the significance and purpose of 
these data.   
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Despite potential double counts or increased reporting, it is likely these data underestimate the 
numbers of animals hit by vehicles.  This is probably due to the following compounding reasons:  
1) not all animal-vehicle collisions are reported by the drivers; 2) animals hit by vehicles don’t 
always die on or near the road but could die away from the road, undetected; and 3) not all 
animals killed by vehicles on or near the road are seen or reported and in some cases, people pick 
up carcasses without reporting the occurrence.  

The authors are cautious in making any definitive conclusions with this dataset but rather use 
these data as the “best available information”.  For this report, three sets of data are presented:  1) 
the entire data set from 1992 to 2002; 2) a subset of data from 1998 to 2001; and 3) the 2002 data 
subset alone in an attempt to control sampling differences between years.  Road kill locations 
were recorded by mile markers to the tenth of a mile; therefore the authors refer to mile markers 
rather than metric stationing.   

Evaro 
The original plan for the Evaro area included wildlife fencing from mile marker 7.2 to 12.2. 
Between 1992 and 2002 there were a total of 38 reported ungulate (deer and elk) road kill along 
this stretch of road, ranging from 0 to 4 and averaging 0.88 (SD = 1.03) reported road kills per 
tenth mile.  Figure C-2 shows how the Evaro road kill data from 1992 to 2002 breaks down for 
ungulates and bear, per tenth mile.  Figure C-3 shows the same with the subset of data from 1998 
to 2001 and Figure C-4 shows the 2002 data alone.   

Reported road killed animals on US 93 Evaro to 
Polson, Source:  MDT and MHP records, 1992-2002
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Figure C-1: Annual reported roadkills on US 93 Evaro to Polson from 1992 to 2002.  Source:  Montana 
Department of Transportation and Montana Highway Patrol records. 
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It has been proposed to not install wildlife fencing from the Reservation boundary to Whispering 
Pines Road (mile markers 7.2 to 9.3).  This area averaged 1 (SD = 1.05) reported road kills per 
tenth mile while the areas that will be fenced as originally planned averaged 0.8 (SD = 1.03) 
reported road kills per tenth mile (Table C-1).  Similar trends are seen in the 1998-2001 and 2002 
data subsets, with the average road kills per tenth mile in the unfenced areas slightly exceeding 
means for the fenced area and the entire Evaro stretch; though there was no statistical difference 
between fenced and unfenced means.   

Note: these calculations and graphs do not include the most recent proposal changes to 
shorten the fence at the north end of Evaro. 
 

Reported ungulate & bear road kills, mile markers 7.2 to 12.2 
(Original US 93 wildlife mitigation area in Evaro)
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Source:  MDT and MHP records, 1992-2002
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Figure C-2: Reported ungulate and bear road kills from 1992-2002 per tenth mile from mile marker 
7.2 to 12.2 on US 93 in the Evaro area.  The graph distinguishes areas that will and areas that may not 
include wildlife fencing in the reconstruction. 
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Reported ungulate & bear roadkill, mile markers 7.2 to 12.2
(Original US 93 wildife mitigation area for Evaro)

15 road kills total
Source:  MDT and MHP records, 1998-2001 data only
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Figure C-3: Reported ungulate and bear road kills from 1998 – 2001 per tenth mile from mile 
marker 7.2 to 12.2 on US 93 in Evaro area.  The graph distinguishes areas that will and areas that 
may not include wildlife fencing in the reconstruction 
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Table C-1: Summary statistics for reported road kills per tenth mile on US 93 in the Evaro area from 1992-
2002, 1998-2001, and 2002 alone.  Subsets of data were summarized in an effort to control probable 
differences in sampling efforts. 

1992-2002 data (45 
road kills) 

1998-2001 data (15 
road kills) 

2002 data (17 road 
kills) 

Reported 
Evaro 

roadkills 
per 10th 

mile 
entire 
area fenced  unfenced entire 

area fenced unfenced entire 
area fenced  unfenced 

N (10ths 
of miles) 51 30 21 51 30 21 51 30 21

Mean # 
rdkill / 0.1 
mile 0.882 0.8 1 0.294 0.267 0.333 0.333 0.267 0.429

StDev 1.032 1.031 1.049 0.6097 0.64 0.577 0.766 0.583 0.978

SE Mean 0.145 0.188 0.229 0.0854 0.117 0.126 0.107 0.106 0.213

 

Reported ungulate & bear road kills, mile markers 7.2 to 12.2 
(Original US 93 wildlife mitigation area in Evaro)

17 road kills total
Source:  MDT and MHP records, 2002 data only

0

1

2

3

4

5

7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0
Tenths of mile

re
po

rte
d 

ro
ad

 k
ill

bear rdkill in
unfenced areas
(3 total)
ungulate rdkill in
unfenced areas
(6 total)
bear rdkill in
fenced areas (1
total)
ungulate rdkill in
fenced areas (7
total)

No fence m m  7.2 to 9.3 Fence m m  9.4 to 12.2

 
Figure C-4: Reported ungulate and bear road kills from 2002 per tenth mile from mile marker 7.2 to 
12.2 on US 93 in the Evaro area.  This is the most recent available road kill data.  The graph 
distinguishes areas that will and areas that may not include wildlife 
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Ravalli Hill 
The original plan in the Ravalli Hill area was install wildlife fencing from mile marker 27.5 to 
30.9.  Across this stretch, a total of 8 deer road kill and no bear road kill were reported from 
1992-2002 (Figure C-5), ranging from 0 to 1 per tenth mile.  Fencing will be installed from the 
northern end of the town of Ravalli and the MT 200 junction to mile marker 28.5, but it is 
proposed to not fence from mile 28.6 northward.  Of the 8 reported road kills, 4 occurred in the 
fenced area while the other 4 were in the proposed unfenced area.  Summarizing the data from 
1992 to 2002, the entire Ravalli Hill area averaged 0.2 (SD = 0.19) road kill per tenth mile; while 
an average 0.36 (SD = 0.5) and 0.17 road kill per tenth mile were reported for fenced and 
unfenced Ravalli Curves areas, respectively.  Because of the low numbers of reported road kills, 
WTI did not analyze the subsets of data to compare to the larger set of data.   

Animal crossings of US 93 
To evaluate the wildlife mitigation measures in terms of maintaining connectivity across US 93, 
WTI is comparing pre- and post-construction animal movements across the road in areas 
originally planned to have the longest sections of wildlife fencing with crossing structures 
installed (Evaro, Ravalli Curves, and Ravalli Hill).  To estimate animal crossings prior to the 
reconstruction, WTI installed 62 sand tracking beds, each 100 meters long, at random locations 
parallel to the road.  This method randomly sub-samples animal activities, as interpreted by 
tracks, next to US 93, for approximately 30% (6200 meters total) of the total length of road that 
was planned for wildlife fencing.  The resulting extrapolated preconstruction crossing rate for 

Reported deer roadkill, mile markers 27.5 to 30.9 
(Original US 93 wildlife mitigation area for Ravalli Hill) 
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Source:  MDT and MHP records, 1992-2000
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Figure C-5: Reported deer road kills from 1992-2002 per tenth mile from mile marker 27.5 to 30.9 on US 93 
in the Ravalli Hill area.  The graph distinguishes areas that will and areas that may not include wildlife 
fencing in the reconstruction. 
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those lengths of road will be compared to post-construction tracking bed data that quantify 
animals crossing under or over US 93 via the crossing structures and animals that cross the road, 
at grade, at the ends of the fence.   

WTI documented tracking observations from these 62 tracking beds for 9 and 6 weeks in the 
summer and fall, respectively, until the tracking medium froze.  During that time, the 25 tracking 
beds in Evaro and the 20 tracking beds in Ravalli Curves were visited once a week for a total of 
15 visits.  The 17 tracking beds in Ravalli Hills stretch were visited once a week for 10 visits due 
to the fact that these tracking beds were installed later than the Evaro and Ravalli Curves 
tracking beds.   

Across all three study areas, WTI recorded a total of 2193 track observations.  These 
observations included interpreted behaviors of animals approaching, leaving, and moving 
parallel to the road.  It was assumed an animal crossed the road if the animal’s trajectory spanned 
5 meters or less of the tracking bed length as they approached or left the road.  Presence was 
recorded when behaviors or directional movements were indiscernible.  Tracks of black bear (no 
grizzly bear; hereafter we refer to black bear simply as “bear”), elk, deer (white-tailed and mule 
combined), moose, mountain lion, coyotes, raccoon, rabbit, skunk, snakes, geese, and porcupine, 
as well as domestic cats and dogs, cattle and horses, and humans (and presumably a human entity 
stepping across the bed on roller-blades) were found.  Numerous automobile, 4-wheeler, and 
bicycle tracks that moved through the beds were also found.  Regarding WTI’s study focal 
animals, 1115 and 94 observations of deer and black bear tracks, respectively, across the three 
study areas (Figures C-6 & C-7) were recorded.  Most of these track observations were 
interpreted as crossings of the road (Figures C-8 & C-9).    
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Figure C-6: Deer track observations recoded in the Evaro, Ravalli Curves and Ravalli Hill 
track beds during the 2003 summer and fall seasons.  The track beds randomly sub-sample 
approximately ately 30% of the total length of the US 93 originally planned for the wildlife 
fencing with crossing structures; hence, each area had varying numbers of 100 m tracking 
beds, as noted parenthetically on the x-axis. 
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Figure C-7: Bear track observations recorded in the Evaro, Ravalli Curves and Ravalli Hill track beds during 
the 2003.  The track beds randomly sub-sample approximately 30% of the total length of US 93 originally 
planned for wildlife fencing with crossing structures; hence, each area had varying numbers of 100m tracking 
beds, as noted parenthetically on the x-axis. 
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Figure C-8: Deer behavioral observations as interpreted from tracks recorded in 2003 
along a sub-sample of approximately 6200 meters of US 93 originally planned for 
wildlife fencing and crossing structures in the Evaro, Ravalli Curves and Ravalli Hill 
areas. 
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Figure C-9: Bear behavioral observations as interpreted from tracks recorded in 2003 along a sub-sample of 
approximately 6200 meters of US 93 originally planned for wildlife fencing and crossing structures in the 
Evaro, Ravalli Curves and Ravalli Hill areas. 

Evaro 
WTI visited the 25 Evaro track beds 15 times and recorded a total of 494 deer and 49 bear tracks.  
Of these observations, deer crossed the road 219 times (44%) and bears crossed 46 times (94%).  
A total of 208 (42%) deer and 33 (67%) bear track observations occurred in track beds 1-9, the 
area proposed to have no fencing (Figures C-10 & C-11).  Researchers calculated deer crossing 
rates as the number of deer crossing observations per tracking bed per visit (crossing rates for 
bears were not calculated due to small sample size).  Mean crossing rates for all 25 beds, 16 beds 
in the fenced area, and 9 beds in the unfenced area were compared (Table C-2) and are displayed 
graphically for fenced and unfenced areas as well (Figure C-12).   

Deer crossing rates across all 25 track beds in Evaro ranged from 0 to 2.3 crossings per bed per 
visit.  The range of rates in the fenced areas was 0 to 1.7 with the highest deer crossing rates of 1 
and 1.7 found in the track beds located at the proposed southern terminus of the fence, near 
Whispering Pines Road.  Deer crossing rates in the proposed unfenced areas ranged from 0.3 to 
2.3, with the highest crossing rate recorded in the southern most track bed near the Reservation 
boundary and the south end of the original fencing plan.  When a 2-sample t-test to compare 
mean deer crossing observations per bed per visit between the fenced and unfenced areas was 
applied, the crossing rate in the unfenced area was higher, but not quite significant (P<0.05) 
(Figure C-11; n = 20, t 12 = 1.85, P = 0.089).   
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Figure C-10: Deer track observations from 15 weekly visits of 25 100-meter sand track beds randomly placed 
parallel to US 93 in the Evaro area.  The graph distinguishes between areas that will and areas that may not 
include wildlife fencing in the reconstruction. 
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Figure C-11: Bear track observations from 15 weekly visits of 25 100-meter sand track beds randomly placed 
along and parallel to US 93 in the Evaro area.  The graph distinguishes between areas that will and areas that 
may not include wildlife fencing in the reconstruction.  
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Table C-2: Average deer crossings rates (crossings per track bed per weekly visit) from 15 visits of the 25 100-
meter sand track beds randomly placed along and parallel to US 93 in the Evaro area.  Mean deer crossing 
rates were greater in the areas proposed to not have wildlife fencing (n = 20, t 12 = 1.85, P = 0.089, α = 0.1). 

Evaro 

Average deer crossing rates 
(xings per bed per visit) 

entire 
area fenced  unfenced 

total meters sampled 2500 m 1600 m 900 m 

Mean rate of deer xings/bed/visit 0.773 0.583 1.058 

StDev 0.571 0.527 0.616 

SE Mean 0.128 0.137 0.218 

 

unfenced   fenced

0

1

2

Average deer crossing rates
between track beds in fenced and
unfenced area of Evaro

(m eans  indicated by solid circles)

Mean
crossing
rate
(crossings
per
trackbed
per visit)

 
Figure C-12:  Average deer crossing rates (crossings per track bed per weekly visit) from 15 
visit of 9 and 16, 100 m sand track beds in unfenced and fenced areas, respectively, along US 
93 in the Evaro area.  Mean deer crossing rates were greater in the areas proposed  to not 
have wildlife fencing was higher, but not significant (P<0.05; n = 20, t 12 = 1.85, P = 0.089).  
The box represents the middle 50% of the data. The line through the box represents the 
median. The lines extending from the box represent the upper and lower 25% of the data 
(excluding outliers). Outliers are represented by asterisks (*). 
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Ravalli Hill 
Of the 110 deer tracks detected during 10 visits of the 17 track beds in the Ravalli Hill area, only 
20 (18.2%) occurred in the proposed unfenced area (Figure C-13) along with 3 (17%) of the 18 
bear track observations (Figure C-14).  Most bear observations were found in track beds at the 
base of Ravalli Hill, where the road leaves the town of Ravalli and heads north, ascending the 
hill.   

Deer crossings per bed per visit ranged from 0 to 1.9; no deer were recorded crossing in the 8 
track beds located in the proposed unfenced area, while crossing rates observed in the track beds 
located in the fenced area spanned from 0.2 to 1.9 deer crossings per bed per visits.  WTI did not 
conduct any tests for statistically significant differences between deer crossing rates in the fenced 
and unfenced areas of Ravalli Hill. 
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Figure C-13: Deer track observations from 15 weekly visits of 25 100-meter sand track beds randomly placed 
along and parallel to US 93 in the Ravalli Hill area.  The graph distinguishes areas that will and areas that 
may not include wildlife fencing in the reconstruction. 
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Figure C-14: Bear track observations from 15 weekly visits of 25 100-meter sand track beds randomly placed 
along and parallel to US 93 in the Ravalli Hill area.  The graph distinguishes areas that will and areas that 
may not include wildlife fencing in the reconstruction. 

Discussion of Animal-Vehicle Collision and Animal Crossing Data Relative to 
Proposed Wildlife Fencing Changes 
While far from conclusive due to the limitations of the AVC data mentioned earlier, no statistical 
difference between the reported animal-vehicle collisions in fenced versus unfenced areas overall 
were found.  The crossing rate data prompts some considerations as fencing plans are revised.   

Evaro 
The elimination of wildlife fencing from Whispering Pines Road south to the reservation 
border is concerning relative to reducing AVCs.  In this area, 21 reported AVCs occurred 
between 1992 and 2002.  In addition, track bed data indicate higher rates of deer and bear 
activity in the unfenced area compared to the fenced area, with 42% of the deer and 67% of the 
bear track observations recorded in the 9 beds in the unfenced area (36% of all track beds in the 
Evaro study area).   

WTI has specific concerns about the area just north of the Reservation boundary.  Bears and 
deer cross frequently at the southern end of the Evaro area, just north of the town site.  The 
stretch north of Evaro transitions from 2 to 4 lanes and just a ways further north there is a curve.  
Short sight distances on the curve, vehicles turning on or off the highway from access points near 
the Reservation boundary and the lane transition may affect drivers’ abilities to see and avoid 
animals in this area.  Reconstruction will reduce access points in Evaro “proper”, but the 
footprint of the road will not be much different than it is currently.  Numerous black bear AVCs 
at the northern end of the Evaro study area, near East Fork of Finley Creek have occurred, 
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some of which have recently occurred north of the original fencing proposal’s northern 
termination point.  Without mitigation, the southern and northern stretches of the Evaro area 
originally proposed to be fenced, AVCs may continue to be an issue in this area.    

Fencing from Whispering Pines Road to the Reservation border may not be favored for a 
variety of reasons, but the authors recommend the TDC look at alternative mitigation 
measures for this stretch.  Such alternative measures are listed and described in “Alternatives 
to Wildlife Exclusion Fencing”.   

Ravalli Hill 
The AVC reports on the top of Ravalli Hill, the proposed unfenced stretch, are not of concern 
and there are only a few deer and black bear tracks recorded in that area along with occasional 
coyote, skunk, and snake tracks.  It does not appear that there will be major implications in terms 
of AVCs if the top of Ravalli Hill is unfenced.  

If the fencing in Ravalli Hill is reduced as proposed, the authors recommend that the new north 
end of the fence extend further beyond Ravalli Hill wildlife crossing #2 than originally proposed, 
tying the eastern fence in to the rocky slopes on that side of the highway.  It will also be 
important to consider the wing fencing angle and length for the western fence’s north end, 
paying attention to the potential constriction that could occur between the wing fence and the 
Bison Range fence.   

However, shortening the fence at the south end of Ravalli Hill is not recommended..  Although 
existing AVC data indicate the southern most stretch of Ravalli Hill is not currently a high kill 
area, researchers recorded many deer and black bear tracks and crossings in our first three 
track beds in this area.  While this is currently an ideal scenario (i.e., animals moving across the 
road without getting hit), the new road with increased capacity and larger radius for the curve 
just north of Ravalli may result in faster moving traffic and more animal-vehicle conflicts.  
Currently, northbound drivers accelerate from the 45 mile per hour speed zone in Ravalli to 
ascend the hill and southbound drivers are breaking as they descend the hill and curve into the 
town of Ravalli.  Given the curve, hill, high rate of crossing in this area, and increased traffic 
levels in the future, the authors recommend that the southern end of the Ravalli Hill fencing 
begin near the town of Ravalli as originally planned.   

WTI acknowledges other issues regarding this southern stretch of fencing in Ravalli Hill.  The 
majority of the track observations in the Ravalli Hill area were recorded in track beds just north 
of the town of Ravalli, about 300-500 m south of the planned wildlife crossing.  Until animals 
adapt to the fence and use the under-crossing, animals may “end run” around the southern fence 
termini which could result in increased human-wildlife interactions in Ravalli.   
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EFFECTS OF WILDLIFE FENCING CHANGES ON WILDLIFE 
MONITORING METHODS 

This section outlines potential effects of proposed fencing changes as they relate to monitoring 
and evaluating effectiveness of the mitigation efforts.  Animal crossing methodologies is the 
focus since this is the component of the evaluation that will be affected by any changes in the 
fencing.  Animal-vehicle collision data collection will not be affected by fencing changes.  
Again, there is no reference to the Ravalli Curves wildlife mitigation area in this report as there 
are no proposed changes for this area.   

Animal crossing tracking bed study design 
WTI has been documenting tracking observations of animals crossing the road from 62 tracking 
beds since their installation, throughout summer and autumn 2003 (see previous description of 
methods).  The sample size of 62 beds was determined based on a power analysis conducted with 
similar crossing rate data from another study (Barnum 2001).  Through this power analysis, WTI 
determined that a sample size of 62 track beds (each tracking bed is a sample unit) would enable 
detection of differences of ±13% and greater between the pre- and post-construction crossing 
rates.   

With the proposal to reduce the wildlife fencing lengths in the Evaro and Ravalli Hill areas, 20 of 
the 62 tracking beds are now in areas that will not have wildlife fencing (Table C-3). These 20 
tracking beds can no longer be used to estimate the number of wildlife crossings to compare to 
post-construction crossing data in areas with wildlife crossing structures and fencing. This means 
that the sample size of the study is reduced by 32%.  

A reduction in sample size makes it harder to show possible changes in animal crossing rates 
before and after construction.  Figure C-15 demonstrates how sample size affects the ability to 
detect a difference between pre- and post construction deer crossing rates.  Based on a power 
analysis conducted before installation of the tracking beds investigators estimated that with 62 
beds differences in pre- and post-construction crossing rates of ±13% and greater would be 
detected.  Looking at that same analysis, the loss of 20 tracking beds indicates investigators 
would only be able to detect differences of ±14% and greater, which will not severely affect the 
evaluation study, but with fewer tracking beds it becomes exponentially harder to detect 
differences between treatments, as Figure C-15 exemplifies, for example, when sample size is 
reduced from 20 to 10.  These power analyses were based on data from another study (Barnum 
2001) and were translated to the WTI study design.  This situation may be different, and the loss 
of the 20 tracking beds may affect the investigators ability to detect differences more than is 
understood based on Barnum’s (2001) data.  To further explore this situation, investigators did a 
new power analyses based on the data collected from the sand tracking beds in summer and 
autumn 2003. 
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Table C-3: Stationing and tracking bed (sampling unit) changes for original and proposed fencing plans. 

Study 

Area 

Stationing 

for original 

fencing plans 

Number of 

original 

tracking 

beds (n) 

Stationing for 

proposed fencing 

plan 

Tracking beds (n) 

under proposed fencing 

plan 

Evaro ±123 to ±205 25 157 (Whispering 
Pines rd) to ± 205 

16 (9 beds lost: beds 1-9) 

Ravalli 
Curves 

±374 to ±437 20 No changes 20 (no changes) 

Ravalli 
Hill 

± 451 to ±503 17 ±451 to ± 465 & 

±497 to ±503? 

6 (11 beds lost; beds 6, 7, 
8, 10, 11, 12, 13, 14, 15, 
16, and 17) 

Totals 19,700 meters 
of fencing 

62 tracking 
beds 

13,100 meters of 
fencing 

Sum: 42 tracking beds 
remaining, 20 lost 
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Figure C-15: Power analysis for a 2-sided test based on Barnum’s deer crossing data, translated to the study 
design of the Hwy 93 study. Power = 0.80, α = 0.05 (Barnum 2001). 

Power analyses with 2003 US 93 tracking data 
WTI conducted the power analyses using tracking data observations of deer crossings only 
(white-tailed deer and mule deer combined). The average number of deer tracks encountered per 
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visit per sand tracking bed (100 m long) (TRX/VISIT) were calculated. The beds were visited 9 
times (Evaro and Ravalli Curves) and 4 times (Ravalli Hill) in summer and 6 times in autumn 
(all three areas). 

For this analysis investigators assumed to have one years worth of data before construction, and 
one years worth of data after construction. It was assumed that the tracking beds would be visited 
once a week during three six week periods (spring, summer and fall), 15 times per year in total. 
Therefore, TRX/VISIT by 15 was multiplied ((TRX/VISIT) x 15). The average number of deer 
tracks per 15 visits was 12.6 (based on 62 beds). This variable is a “count” variable that typically 
has a positively skewed distribution. In order to conduct a t-test this variable must be 
transformed into one that has a normal distribution. Taking the natural logarithm typically does 
this. However, there were 13 sites that had 0 deer tracks (out of a total of 62 sites), and this 
causes problems when the natural logarithm (Ln) is taken. Therefore a relatively small value; 0.1 
(Ln((TRX/VISIT)x18+0.1)) was added.  

Four power analyses were performed. The first two were based on all 62 tracking beds, whereas 
the 3rd and 4th analyses were based on the 42 remaining tracking beds only (average number of 
deer tracks was 14.63 with 3 sites that had 0 deer tracks). The first and third analyses are based 
on the alternative hypothesis that investigators do not know whether the mitigation measures will 
result in more or fewer animal crossings (2-sided). The second and fourth analyses are based on 
the alternative hypothesis that if there is a difference investigators expect the mitigation 
measures to result in more animal crossings (1-sided).  

Figure C-16 shows the results for a 2-sided test. Based on the data from all 62 tracking beds the 
percentage difference investigators would be able to detect was increased from ≥16.9% to 
≥20.0% (a loss of 3.1%). Based on the data from the 42 remaining tracking beds the percentage 
difference investigators would be able to detect was increased from ≥11.8% to ≥13.4% (a loss of 
1.6%). With only 42 tracking beds remaining investigators are still far off from the steep sections 
of the two curves on Figure C-16 where a very rapid loss of power occurs. 

Figure C-17 shows the results for a 1-sided test. Based on the data from all 62 tracking beds the 
percentage difference investigators would be able to detect was increased from ≥15.4% to 
≥17.9% (a loss of 2.5%). Based on the data from the 42 remaining tracking beds the percentage 
difference investigators would be able to detect was increased from ≥11.1% to ≥12.4% (a loss of 
1.3%). With only 42 tracking beds remaining investigators are still far off from the steep sections 
of the two curves on Figure C-16 where a very rapid loss of power occurs. 
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Power analyses results 
There is great similarity between the power analyses based on Barnum’s (2001) data and the data 
based on the 42 remaining tracking beds. This indicates that the original power analysis 
described the situation for Hwy 93 quite well.  

Ten of the 11 beds that were lost on Ravalli Hill had 0 deer tracks. This resulted in a relatively 
low standard deviation for the 42 remaining tracking beds. As a result the 42 remaining tracking 
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Figure C-16: Power analyses for a 2-sided test for two data sources: one based on all 62 
tracking beds, and one based on the 42 remaining tracking beds only. Power = 0.80, α = 0.05. 
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Figure C-17: Power analyses for a 1-sided test for two data sources: one based on all 62 tracking 
beds, and one based on the 42 remaining tracking beds only. Power =0.80, α = 0.05. 
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beds had better power than the 62 tracking beds. The standard deviation will be based on the 
fenced areas only, and not on the areas that are no longer scheduled to be fenced.  

Although a 1-sided test seems to makes sense, it is not really appropriate. The wildlife crossing 
structures and fencing may make road crossings safer for the animals, but they do not necessarily 
result in an increase of crossings. The road will be wider than before and the animals can now 
only cross at the wildlife crossing structures. Therefore a 2-sided test is far more appropriate than 
a 1-sided test.  The conclusion should be based on the power analysis for a 2-sided test that is 
based on the data from the 42 remaining tracking beds only. 

Conclusions on Fencing Reduction Effects on Monitoring Methods 
The new power analysis for a 2-sided test based on the data from the remaining 42 tracking beds 
indicates that the percentage difference we would be able to detect would increase from ≥11.8% 
to ≥13.4% (a loss of 1.6%). This does not substantially affect our ability to detect a difference in 
animal crossings before and after construction. In addition, according to the line in Figure C-1 
investigators are still well on the horizontal part of the curve, which indicates that the study still 
has a substantial safety margin for the power of the analyses. As a whole, the loss of the 20 
tracking beds has increased the investigators ability to detect a difference in animal crossings 
before and after construction (from ≥16.9% to ≥13.4%), largely due to the reduction in “0-
observations” from the tracking beds on Ravalli Hill. Based on these three arguments (only 1.6% 
loss, acceptable safety margin, better power than before) the authors cannot justify asking for 
compensation for the loss of the 20 tracking beds.  

However, if one is not only interested in a potential change in animal crossings in the three areas 
combined, but also in a potential change in animal crossings in the individual areas, a different 
conclusion would be reached. For Evaro, the number of tracking beds is reduced from 25 to 16. 
The investigators ability to detect a difference in animal crossings before and after construction 
in this area was substantially reduced (from ≥16.6% to 21.4%, a loss of 4.8%). Perhaps more 
importantly, the authors now find themselves on the steep part of the curve. This means that if 
the power analysis is only slightly off, the ability to detect a difference in animal crossings 
before and after construction in only the Evaro area could be exponentially reduced. This is even 
worse for Ravalli Hill (tracking beds from 17 reduced to 6; ability to detect difference reduced 
from ≥20.5% to ≥60.5%, a loss of 40%).   

To summarize, the reduction in tracking bed sample size will not significantly affect the 
authors’ ability to detect changes between pre- and post-construction deer crossing rates 
across all three focus study areas, but WTI will not be able to compare crossing rates between 
the three focus study areas. 

Note: The latest proposal is to shorten fence at the northern end of Evaro. This results in the 
loss of 5 more beds. While this is not ideal for the study design, it is unlikely to change the 
conclusions dramatically.  
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FENCING DESIGN CONSIDERATIONS AND DETAILS 

Deterring Animals from Accessing Areas Between the Fences 
The purpose of the wildlife exclusion fencing is two-fold:  to funnel animals toward crossing 
structures and to prevent animals accessing the road where collisions can occur.  No wildlife 
exclusion fencing design has been found to be 100% effective and completely impermeable to all 
animals, but several techniques have been used to deter animals from accessing the area between 
the fences.  For those animals that breach the fence and are trapped on the right-of-way between 
the fences, there are methods that can expedite the animals’ exit from this unsafe situation. 

Fence end treatments 
Fence end treatments can limit the numbers of animals becoming trapped between the fences.  
Fence end treatments are typically applied on the right-of-way, extending from the pavement to 
the last fence post where the wing fencing angles away from the road.  Thus far, the TDC has 
concluded that current fence end treatment designs are not sufficiently safe for motorists, 
pedestrians and cyclists that travel along the road or in the right-of-way.  The following fence 
end treatments were discussed at the December 2003 US 93 Technical Design Committee (TDC) 
meeting.   

• Cattle guards or wildlife grates:  Cattle guards could be used between the fence and the 
pavement, although WTI is not aware of any projects applying cattle guards in this 
manner.  Cattle guards could also be installed in the road itself, but there may be safety 
issues related to the high speeds on US 93.  The TDC considered cattle guards potentially 
dangerous for people, especially children, and may divert people onto the road if they 
were avoiding stepping across the cattle guard. Further examination of the application 
and effectiveness of cattle guards at fence gaps is described in the next section).  

• Electrobraid fencing:  The TDC felt that using electric fencing for this particular 
application to be potentially dangerous for the public as it would likely divert people onto 
the road.  Further examination of the application and effectiveness of electric fencing is 
described in the “Alternatives to wildlife fencing,” section. 

• Cobbles: This technique creates a surface that is difficult for animals to walk across.  
While this has been applied on the Trans-Canada Highway near the town of Canmore, 
Alberta, FHWA and MDT consider cobbles as obstacles in the clear zone, and therefore 
this alternative is not acceptable with regards to driver safety. 

With no other alternatives proposed, there will be no fence end treatments to prevent animals 
from accessing the right-of-way between the wildlife exclusion fencing.  Without fence end 
treatments, the effectiveness of the fencing will be reduced as animals will not be deterred 
from accessing the right of way between the fence.  If there are numerous incidents of animals 
becoming trapped between the fences, animal-vehicle collision rates may increase.   
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Treatments for access points or fence gaps 
Access roads that intersect US 93 in areas where wildlife fencing is planned are problematic.  
These access points create gaps in the wildlife fence that must safely pass vehicles, pedestrians 
and cyclists.  It will be important to apply mitigation where there are gaps in the wildlife 
fencing to deter animals from walking into the right-of-way.  Options for the TDC’s 
consideration follow:   

No additional measures:  The effectiveness of the wildlife fencing and wildlife crossing 
structures with regard to animal-vehicle collisions could be reduced from about 96% to less than 
40%. 

Mitigation measures that discourage animals from crossing: 

• Gates:  Access points that are infrequently used by only one or several people or official 
organizations could be gated (preferably with a lock).  This could potentially result in a 
barrier that is close to 100% effective, similar to having no gaps in the wildlife fencing. 

• Cattle guards or wildlife grates:  The literature on the effectiveness of cattle guards as 
a means to deter wildlife movements is limited with varying conclusions.  In an extensive 
and comprehensive review of deer deterrent techniques for airports, Katona et al (2000) 
recommend cattle guards longer than 4.6 meters as an effective means of deterring deer 
from entering at fence openings that must remain open for vehicle passage.  Peterson et al 
(2003) mentions papers with conflicting results: 

“Reed et al (1974) found in field tests that mule deer and elk walked 3.7 meters long 
guards (10.2cm spacing between rails) but would not jump them.  Conversely, 
Sebesta (2000) found in field tests that white-tailed deer would jump 3.7 meters long 
guards (10.2cm spacing between rails) but would not walk across them.” 

In the case of the Reed et al. (1974) paper, investigators individually released 18 deer from 
captivity and found that 16 deer crossed the guard; the incentive to flee may have influenced 
these results.  Peterson et al. (2003) suggests that there are sufficient incentives to cross (e.g., 
higher quality forage in the right-of-way) deer may attempt or succeed crossing these guards but 
if there is forage of equal quality both inside and outside of the fence, there may not be an 
incentive for deer to cross.   

Peterson et al (2003) evaluated how well 3 types of bridge grating material excluded Key deer 
from an attractant (food) (Figure C-18).  The 3 different bridge grates were approved by Florida 
DOT with regards to pedestrian, cyclist and motorist safety (Figures C-19-21).  Grate 1 was 
99.5% effective in excluding Key deer and grates 2 and 3 were determined to have similar levels 
of effectiveness, preventing approximately 75% of the Key deer crossing attempts.  The authors 
recommend grate 1 for deterring Key deer but suggest that the grates be selected according to the 
hoof size and jumping ability or agility of the target species.  Larger openings in the pattern may 
be required for mule deer or elk); at the same time, they acknowledge that the smaller pattern 
with the diagonal cross member may be preferred by pedestrians and cyclists.  Peterson et al. 
(2003) estimate bridge decking costs at $40-$130 per square meter.   

The authors recommend that the TDC considers modified bridge grating or cattle 
guards at gaps in the wildlife fencing.  Modified bridge grating or cattle guards should 
be combined with jump-outs on either side of the road to provide an escape for animals 
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that do succeed in crossing modified bridge grating or cattle guards. Modified bridge 
grating could potentially result in a barrier that is 99% effective, similar to having to gaps 
in the wildlife fencing. 

Mitigation measures that promote animals to cross: 

• Crosswalks:  When there are two gaps in wildlife fencing across from each other, such 
that animals can cross at those gaps, it is possible to use unique signing to warn drivers 
that animals may cross at that particular location, similar to pedestrian crossings.  Lehnert 
and Bissonette (1997) evaluated such “wildlife crosswalks” in Utah and found mule deer 
(Odocoileus hemionus) mortality declined 42.3% and 36.8% along their 4-lane and 2-lane 
highway study sites, respectively.  Although they were not able to statistically correlate 
the mortality reduction to the crosswalk installation, it was noted that deer used the right-
of-way less and were observed crossing within the crosswalk, indicating that fencing 
combined with crosswalks may have contributed the reduction in mortality.  Lehnert and 
Bissonette (1997) attributed mortalities to lack of driver responses to crosswalk warning 
signs, and the fact that animals would leave the crosswalk and become trapped between 
the fences.  Their article offers design suggestion to improve this application. 

• Crosswalks combined with animal-detection & driver warning systems: See above. 
If the crosswalks and jump-outs are combined with an animal-detection and driver 
warning system, the number of animal-vehicle collisions could potentially be reduced by 
about 80% (compared to 96% for continuous wildlife fencing combined with wildlife 
crossing structures). 

Similar to fence end treatments, if no additional mitigation measures are applied at gaps in the 
wildlife fencing, the effectiveness of the wildlife fencing will be reduced, and the return on the 
investments in wildlife fencing and crossing structures will be jeopardized. The authors 
recommend that modified bridge grates are installed at gaps in the fencing, perhaps even at 
(locked) gates. This measure is potentially 99% effective. If modified bridge grates are not an 
option, then openings on both sides of the road, in combination with an animal-detection and 
driver warning system (potentially 80% effective) is recommended.  The authors strongly 
caution the TDC against having gaps without additional mitigation measures.  
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Figure C-18: Deer (bridge) grate patterns tested (grates 2 and 3 differ only in the orientation of the grate 
openings) and the test site layout for evaluating the effectiveness of the different grates in excluding Key 
deer from food, Big Pine Key, Florida, 2001-2002 (Peterson et al. 2003). 
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Figure C-19: Installation of deer (bridge) grate used 
in deterrence tests for Key Deer, Big Pine Key, FL 
2001-2002 (Peterson et al. 2003). 

 
Figure C-21: Exclusion fencing tied into grate design 
used in deterrence tests for Key Deer, Big Pine Key, 
FL, 2001-2002 (Peterson et al. 2003). 

 
Figure C-20: Grate design used in deterrence tests for 
Key deer, Big Pine Key, FL 2001-2002 (Peterson et al. 
2003).   
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Escape routes 
Escape routes allow animals to exit the right of way if they are caught between wildlife fencing 
along the road.  It is important to have escape routes, with or without fence end or gap treatments 
and such escape routes are especially important if there is no barrier at fence ends or at gaps in 
the wildlife fencing.   

In Banff National Park, one-way gates were unsuccessful as elk learned how to move through 
these in both directions.  The solution to this issue, in areas where there were no jump outs, was 
to install gates that could opened by rangers to haze animals off the right of way (A.P. 
Clevenger, pers. comm.; T. Hurd, pers. comm.).   

The current plan is to install jump outs where the fencing changes angle to funnel in to the 
wildlife crossing structures.  The authors recommend that more jump outs be installed at the 
intervals recommended by Bissonette and Hammer (2000).  In areas with high deer road kill, 
Bissonette and Hammer (2000) recommend placing jump outs at quarter mile intervals (400 m) 
on both sides of the road. When installing many miles of continuous fencing, Bissonette and 
Hammer (2000) recommend spacing the jump outs at quarter mile intervals along the first mile 
of fencing from each fence end.  In other fenced areas that have less deer road kill and that are 
not near the end of the fence, they recommend placing jump outs at half mile intervals (800 m).  
In addition, jump out design and placement details are listed below: 

• Locate jump outs in areas as far from the highway as possible.  These are areas animals 
are likely to flee to and it gives them “space” to calm down;   

• Locate jump outs in areas with natural cover such as trees to shield animals from road 
disturbance;   

• Install a short section of fence on the earthen ramp, perpendicular to the fence line and 
bisecting the jump out opening, in order to direct animals to and off the jump out;   

• Another alternative to the last point to help animals find and use the jump out is to extend 
the earthen ramp beyond the fence to a right angle so that it forms an equilateral triangle 
with the hypotenuse following the line where the fence would have been; and   

• To reduce the amount of fill needed for the ramp, it may be possible to use fill from the 
area outside the fence where the jump out is to be placed to simultaneously raise the 
ground inside the fence and create a depression on the outside of the fence so that the 
vertical face of the jump out is partially below original ground level.  The depression 
outside the fence should be landscaped to extend ~8 feet away from the vertical face and 
so that the top-to-bottom height of the vertical face is 8 ft to deter animals on the outside 
of the fence from jumping in.  This design has been applied along western border of the 
National Elk Refuge in Jackson Hole, Wyoming.  In response to WTI’s inquiry about 
these jumputs, Don Cushman (pers. comm.), one of the refuge managers, comments:   

“Our fence on the west side of the refuge (for about 5 1/2 miles north of Jackson) is 
8 feet high, comprised of two stacked rows of standard 4-foot fencing.  Where the 
jumps are located, we've taken out a section of the upper portion, and we've just 
built a tapered berm on the highway side of the fence.  A vertical wooden wall 
against the fence provides the eastern edge of the berms.  At the middle of the top 
of the berm we have a fence that is perpendicular to the main fence (in the center of 
the opening), so that the elk can't just run up and over the berm and continue 
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outside the fence--they need to turn and jump into the refuge.  We did not build any 
depression on the inside of the fence, although there may be slight ones now as a 
result of elk jumping repeatedly into the landing zone.  This has worked very well 
for access for elk that migrate from the west into the refuge, but this year (for the 
first time, to my knowledge) we've had a few elk do the reverse and jump out.  To 
stop that, we built the berm a little higher, and that seems to have solved the 
problem for now.” 

He continues:  “We do not have assigned monitoring routines, but due to the 
locations, we have a good, consistent picture of what happens.  There's a lot of 
traffic on that road, including refuge employees commuting, and we know that most 
of the elk are not intimidated by the jump, and the perpendicular fence usually turns 
them into the refuge.  Occasionally some will turn and go back across the road and 
back up the butte, but this is not the majority of elk.  I think it's safe to say that we 
would recommend this design, since we did not build all of them at the same time.  
We've continued to use the same design as we've added the most recent couple of 
jumps.” 

Deterring fence climbers 
Observations from Banff NP show that black bear, cougar, and (rarely) lynx can climb fences as 
well as wooden poles (A.P. Clevenger, pers. comm).  Grizzly bears have not been witnessed 
climbing the fence, and they rarely dig under the fence, so are not causing problems with fencing 
in Banff.  Cougars tend to jump to pole-tops rather than climbing the mesh fence.  Most animals 
that climb the fences appear to exit the same way they came in and are rarely killed by cars; 
approximately one black bear per year and one cougar every 5 years are killed by vehicles after 
climbing the fence.  One possible explanation that the black bear intrusions do not typically 
result in mortalities due to vehicle collisions is that many bears breach the fence to eat 
dandelions in the right-of-way.  Once finished eating or if they are scared away, most simply 
climb back over the fence without attempting to cross the road (A.P. Clevenger, pers. comm.)  

The situation on Hwy 93 may be different.  The right-of-way may not offer attractive food and 
US93 is (and will be reconstructed) narrower and will have less traffic than the Trans Canada 
Highway. As a consequence black bears that climb the fence may do so to cross the road, with 
the potential of a collision with a car.   Possible strategies to discourage black bears from 
climbing the fence follow: 

• Provide a 90 degree barbed wire outrigger (i.e. overhang) that extends out ~3 feet:   
o Tests were done with outriggers at 90 and 45 degree angles in Banff NP, but the 

results were never published, possibly because of too small sample size (T. Hurd, 
pers. comm.); 

o A 10 ft chain link fence and barbed wire outrigger was used on SR 29 and SR 46 
in Florida.  This was found to be effective (Roof & Wooding 1996), though part 
of this success may be due the fact that the fencing is a cyclone fence with tighter 
mesh.   

• Use finer mesh fence to prevent bears from getting their feet in the mesh openings to use 
as a step (they climb the fence using mesh openings just like humans would); and  
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• Use metal poles in stead of wooden poles, or design a treatment or a pole that discourages 
black bears from climbing the wooden poles.  Regarding aesthetics, it may be possible to 
paint or treat metal poles dark brown.   

Deterring Fence Burrowers 
To prevent animals from burrowing under the fence the authors recommend attaching a skirt of 
smaller-meshed fencing to the exclusion fencing and burying it in the ground.  Specific details 
such as the following should be considered: 

• Skirt width (which will be determined by how much to bury and how high above ground 
level to attach the top of the skirt to the larger fence) and 

• Mesh size of the lower larger mesh fence and the skirt fence. 

Alternatives to Wildlife Exclusion Fencing  
While the standard page wire wildlife exclusion fencing is considered the most effective means 
to reduce AVCs, there are alternatives to using this type of fencing for mitigating for this safety 
problem.  Alternatives for the TDCs consideration are summarized below.   

Electric fencing alternative 
In their comprehensive report on methods to deter deer from airports, Katona et al (2000) 
summarizes their research in their executive report, as follows:   

“[Electric fence] provides about 80% exclusion of deer that attempt to cross the fence by 
conditioning them to associate electric shocks with the fence. This effectiveness declines 
when (1) maintenance is inconsistent; (2) when lines are short-circuited by weed growth or 
snow cover; or (3) when deer are highly motivated to cross the fence when populations are 
high, during the rutting season in the fall, or when frightened by hunters.” 

At the December 2003 US 93 Technical Design Committee (TDC) meeting, the group discussed 
installing ElectroBraid fencing in selected areas, in place of the wildlife exclusion fencing.  
Katona et al (2000) offer these observations on ElectroBraid (the authors are uncertain if they 
refer to Canadian or US dollars): 

“A six-month evaluation of an ElectroBraid™ electric fence installation at Little Rock AFB 
has been judged to be a success. The 1.8-m high vertical electric fence design used nine 
strands of ElectroBraid™ cord spaced 22.8 cm apart (the bottom three cords were spaced 
15.2 cm apart to deter small animals). The fence was installed in September of 1999 and has 
reduced deer sightings on the airfield from an average of 19 deer per night to one per night 
and 80% of nights have been deer-free. Most deer that were spotted on the field were traced 
to entering through an open gate. Deer that had jumped the fence were running from hunters. 
The fence 9,266-m perimeter installation cost of $82,200 was significantly lower than the 
cost of a conventional 2.44-m chain-link fence with three barbed wires on angle extensions 
($400,000) with an equivalent effectiveness. Snow accumulation should be ploughed away 
from the fence to maintain winter effectiveness. 

Richard Lampan, an ElectroBraid representative, has met with WTI and MDT and has offered a 
trial of ElectroBraid at no cost, with the agreement that if satisfied, WTI will purchase the fence.   
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If the TDC supports installing this alternative fencing, WTI would like to evaluate the 
Electrobraid fencing with regard to the following criteria: 

• Effectiveness: What percentages of animals (specifically deer and black bear) that 
approach the electric fence are effectively repelled or breach the fence line? 

• Costs for operation (e.g. electricity) and maintenance (e.g. fence repairs). 

WTI proposes a pairwise comparison of sections with Electrobraid fencing and sections with 
standard fencing. The length of the sections should be meaningful to wildlife, and it should be 
long enough for certain events to take place (e.g. falling trees).  WTI proposes lengths of 250 
meters of Electrobraid fencing situated next to 250 meters of standard fencing.  WTI proposes a 
minimum sample size of five (i.e. 5 pairs). To do this, 5 road sections of 2*250 m (=500 m) each 
that meet the following criteria would need to be identified: 

• The 500 m long road sections should be located in homogenous sections; i.e. no major 
changes in the road, right-of-way or adjacent habitat / land use. The other side of the road 
should be homogenous as well; 

• The 500 m long sections should be located in areas that do not have access roads; 
• The 500 m long sections should be located in areas that have no or very few people living 

in the direct vicinity; 
• The 500 m long sections should preferably be located adjacent to tribal or other 

government land; and 
• The 500 m long sections should be located on sections where small animals are not of 

concern. Small animals may crawl underneath the electrified fence. 

The power source may depend on local situation, but should preferably be equal for all five road 
sections. The fencing may be powered through solar panel or 110 V, depending on the accessible 
power at each Electrobraid installation.  It would be acceptable to apply Electrobraid fencing on 
one side of the road only. If the other side of the road has Electrobraid fencing too, they will be 
treated as 1 experimental unit, not 2. 

Signage / Driver warning techniques 
Fencing attempts to modify animal behavior and movements; signage attempts to modify driver 
behavior.  It has been shown that the static wildlife silhouette warning signs are ineffective at 
reducing animal-vehicle collisions.  Signs need to be applied in such a manner to impress upon 
the drivers to understand the message and drive more cautiously.  Information on measures used 
to warn drivers of potential animal-vehicle conflicts is provided in the following sections.  

 Speed reductions 
Reduction in speed provides drivers with more time to see and respond to hazards and increase 
their breaking distance.  This logical premise has not been extensively studied in relation to 
animal-vehicle collisions.  Gunther et al (1998) found higher road-kill rates on Yellowstone 
National Park roads with 55 mph posted speed limits compared to 45 mph or lower and they 
concluded that increased speed was the primary factor contributing to wildlife-vehicle collisions.  
They also noted that as park roads were reconstructed with wider (30 feet) paved widths, 
shoulders, and smooth driving surfaces, motorists increased their speeds an average 5 mph and 
some sections of reconstructed roads had an increase road kills.   
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Animal-detection/driver warning systems 
Animal-detection/driver warning systems dynamically detect animals approaching the road and 
then activate a sign to warn drivers.  Dr. Huijser has been conducting research on animal-
detection/driver-warning systems since joining WTI in August 2002.  Dr. Huijser is currently 
overseeing research on the effectiveness of these systems and has extensive experience with the 
issues involved in the installation, maintenance, reliability and effectiveness of such systems. His 
summary papers were included (Huijser and McGowen 2003, Huijser 2003) on animal-
detection/driver-warning systems in North America and Europe with our previous submission of 
this report.   

Animal-detection systems in Switzerland led to 80% reduction in ungulate - vehicle collisions 
(Kistler 1998, Romer et al. 2003).  Detection sections can be installed to begin and end at the 
access roads, excluding the road itself, so that drivers accessing the highway do not trigger the 
system.  However, this leaves unmitigated gaps in the system.  In the case of US 93, animal-
etection systems may be combined with fencing to detect animals or other movement through the 
gap to flash warning lights to watch for hazards entering the road ahead. Vandalism and theft 
may be an issue as these systems are usually exposed to the public eye, but buried geophones in 
combination with infrared sensors have been applied successfully in Nugget Canyon, Wyoming.  
There are numerous technologies used to detect animals and the most appropriate system should 
be selected to fit the specific situation.  If the TDC opts for this alternative, WTI would be 
pleased to work on this particular aspect of mitigation design, installation, maintenance, 
reliability and effectiveness.   

Pavement markings 
Another potential alternative is to apply reflective strips that are used to mark the stripes on the 
road (white and yellow) in such a way that when a large animal enters the road, the animal's 
body simply blocks some of the reflectors so that drivers see a break in the linear pattern of 
reflected light and then slow down and proceed with increased vigilance.  Maine DOT is 
experimenting with smaller intervals of these standard reflective strips (R. Van Riper, pers. 
comm.). This could be a low tech, low cost, vandalism and theft proof solution, but as to date 
there are no hard data on the effectiveness of this mitigation measure. Nevertheless, WTI 
recommends getting more information on this and stress that this technique has had no 
quantitative evaluation to date.  WTI is beginning a review of pavement markers and may be 
able to provide general technical advice on the topic.   

Monitoring 
The two main objectives for the monitoring study are to quantify pre- and post-construction 
AVCs and animals crossing US 93.  WTI has worked with the TDC on the design specifications 
for tracking beds both inside and outside the crossing structures, as well as brackets for mounting 
cameras to monitor activities at the crossing structures.   

In addition to monitoring the activity at the crossing structures, it will be important to monitor 
animals’ responses to fencing as it relates to possible changes in AVC and animal crossing rates 
before and after the construction.  While the crossing structures are our preferred routes for 
animals to move from one side of the road to the other, it is inevitable that wildlife will travel 
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around the ends of the fencing.  To document these “end run” wildlife movements, WTI would 
like 50 meter long sand tracking beds installed at fence ends, parallel to the road.   

WTI would also like sand tracking beds perpendicular to the road and extending the post 
where the wing fence section angles away from the road to the pavement and on either side of 
access road gaps.  Data from these track beds will help WTI estimate the numbers and types of 
animals that may be getting trapped between the fences.  WTI is looking into using heat- and 
motion-detecting cameras or video, but have not committed to a particular design as the authors 
are searching for a “low profile” system to avoid vandalism and theft.   

Finally, it is important to monitor activity at the jump outs. Sand tracking beds on top of and at 
the base of each jump out will allow investigators to monitor which wildlife species are using 
the jump outs and if wildlife may be approaching and jumping in to the right-of-way via these 
breaks in the fencing.   

Below is a summary of how shortening the fencing affects WTI’s ability to evaluate the 
effectiveness of the mitigation with the following points:   

• Despite the fact that shortening wildlife fencing in Evaro and Ravalli Hill will reduce the 
tracking bed sample size from 62 to 42, and now to 37, investigators will still be able to 
do the research well. This is mostly due to the exclusion of the tracking beds on Ravalli 
Hill that had 0 deer tracks. This resulted in a smaller standard deviation, and better 
power, not less (see the earlier power analyses section for details).  This only relates to 
deer (mule and white-tailed). If similar power is to be obtained for other species, 
investigators would have to restore the sample size, perhaps to much more than 62 track 
beds. For example, black bear crossings are about 10-15 times rarer than deer crossings 
and the standard deviation is also likely to be larger. Compensation for the loss of 20 
beds will probably still be inadequate to detect differences in pre- and post-construction 
bear crossings and is likely to be substantially "out of our budget".  Therefore, the authors 
don't think it is reasonable to try to set the same objectives for black bear as for deer.  

• The power for deer crossings is sufficiently maintained for the three areas combined 
(Evaro, Ravalli Curves and Ravalli Hill). However, the power for the individual areas or 
Evaro and Ravalli Hill are severely affected. As a consequence the authors cannot expect 
to analyze the effectiveness of the mitigation measures for each area individually, only 
for the three areas combined. 

• WTI will discontinue preconstruction animal crossing track bed monitoring efforts for the 
Pistol Creek wildlife area of Ravalli Hill. It is of similar size to other small sections of 
fencing.  Rather, the decision was made not to focus preconstruction crossing rate 
estimation efforts on. The same is true for the isolated Frog Creek wildlife crossing with 
short fencing at the south end of Evaro (if the fencing was extended south to the 
Reservation border as WTI recommended earlier, investigators would likely continue 
monitoring this area as the length of installed fencing will affect more of the landscape 
and animal movements in that area). 

• WTI will continue preconstruction monitoring at the remaining fenced areas of Evaro, 
Ravalli Curves and Ravalli Hill.   

• WTI recommends discontinuation of preconstruction animal crossing monitoring for 
track beds in areas that will no longer be fenced.  Data from these areas will no longer 
relate to the main research question. Furthermore, the sample size would be insufficient 
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to be able to conclude whether more or less animals cross at the unfenced sections once 
the fence has been installed. WTI recommends that the resources that would have been 
applied to this effort be saved for unexpected events, such as tracking bed maintenance 
(grading to loosen sand media after winter compaction, weeding/spraying). 

Final Summary of Fencing Design Considerations 
Wildlife exclusion fencing effectiveness increases when the chances of animals breaching the 
fence are minimized.  There are mitigation options to decrease animals entering the right-of way 
and becoming trapped between the fences.  Applying mitigation at the gaps in the fence and 
providing escape routes will be critical on this project.  In addition, maintenance is an important 
factor to keeping animals outside the right of way.   

Continuous wildlife fencing on controlled access highways has been shown to reduce ungulate-
vehicle collisions by 96%.  In a decreasing continuum from this “ideal” situation, animal-
detection/driver warning systems in combination with fencing have been shown to reduce 
animal-vehicle collisions by 80% while “wildlife crosswalks” with unique signage only reduced 
ungulate vehicle collisions by about 40%.  Deterring animals from entering gaps by using cattle 
guards or bridge grates across the gaps has seen varying results, from 99.5% to 75% exclusion 
for Key deer approaching two different grate patterns, to some studies claiming that cattle guards 
are ineffective for deer exclusion.  Following this logical continuum, openings with no 
mitigation to deter animal movements are likely to be even less effective.  Combinations of these 
techniques may increase effectiveness beyond the effectiveness of their individual applications. 

It will be crucial to mitigate where there are single openings on one side of the fence but not the 
other as this could be a significant trapping point for animals.  Gates or wildlife guards may be 
the best solution in these situations.   

Where there are two gaps across from each other, wildlife guards with animal-detection systems 
could both deter animals and warn drivers when animals or cars are entering the roadway.  If 
wildlife crosswalks were used, care would have to be taken with landscaping (that is unpalatable 
to deer and bear) or other methods in the right-of-way to encourage straight crossing to the 
opening on the other side of the road.   

The US 93 reconstruction project is in the unique position to pioneer the way for future 
mitigation projects that must accommodate numerous access points through wildlife fencing.  
Given the number of gaps in the fence on this project, it is possible to install various mitigation 
measures deemed appropriate and monitor each for effectiveness.  Measures that do not meet the 
performance standards that are set forth may need to be replaced in the future.  This approach 
can be difficult to budget for, but it worth consideration. 

To maximize the fencing investment, WTI stresses that the TDC seriously consider these 
measures and reemphasizes that there is a chance that unmitigated gaps are likely to result in 
a serious reduction of the effectiveness of the wildlife fencing and wildlife crossing structures, 
jeopardizing both safety and habitat connectivity.   
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13.  APPENDIX D:  INVENTORY OF WILDLIFE CROSSINGS 
Table D-1:  Inventory of wildlife crossing structure types with dimensions to be installed on US 93 from 
Evaro to Polson, Montana.  List includes crossings identified for inclusion in reconstruction efforts in the US 
93 Reconstruction Memorandum of Agreement (MOA; Skillings Connolly 2000), as well as “new” or 
alternate crossing structures in lieu of structures originally listed in the MOA.  Table continues on following 
pages; key and sources are included at bottom of table. 

TYPE 
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MOA Crossing name

MOA 
Station 

ID 
Design Plans 

Station ID 
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Dimensions 

1 Frog Creek Fish 
Crossing 13140 13287.6 M,P           

1219 mm (1.3 yd) x 1829 
mm (2 yd) (estimated) 

2 North Evaro Wildlife 
Crossing 14340 14802.3 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

3 Rail Link Fish and 
Wildlife crossing 16280 16305   M,P         Not Available 

4 
Finley Creek 

Tributary #1 Wildlife 
Crossing 16960 16862.5 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

5 
Finley Creek 

Tributary #2 Wildlife 
Crossing 17200 17245.1 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

6 Evaro Hill 
OverCrossing 17440 17340     M,P       

45720 mm (50 yd) to 60960 
mm (66.6 yd) 

(recommended width) 

7 
Finley Creek 

Tributary #3 Wildlife 
Crossing 17700 17639.2 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

  NEW STRUCTURE 
(NOT IN MOA) - 18121.3 P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

8 Schley Creek Fish & 
Wildlife Crossing 19860 19840 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

9 
East Fork Finley 
Fish & Wildlife 

Crossing 20420 20409 M,P           

3658 mm (4 yd) x 6706 mm 
(7.3 yd) (estimated) 

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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TYPE 
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MOA Crossing name
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Dimensions 

10 Agency Creek Fish 
Crossing 25860 25825 M,P           

1219 mm (1.3 yd) x 1829 
mm (2 yd) (estimated) 

  NEW STRUCTURE 
(NOT IN MOA) - 30976 F           

42000 mm (45.9 yd) x 2100 
mm (2.2 yd) x 2100mm (2.2 

yd) 

  NEW STRUCTURE 
(NOT IN MOA) - 31026 F           

41000 mm (44.8 yd) x 2100 
mm (2.2 yd) x 2100mm (2.2 

yd) 

  NEW STRUCTURE 
(NOT IN MOA) - 31086 F           

48000 mm (52.4 yd) x 2100 
mm (2.2 yd) x 2100mm (2.2 

yd) 

11 Jocko River Fish & 
Wildlife Crossing 

31200 31200       M,F     

135000 mm (147.6 yd) x 
320000 mm (349.9 yd) 

(MOA recommends 12' min. 
height) 

12 Schall Flats #1 
Wildlife Crossing 33850 Not in Plans M       

13 Schall Flats #2 
Wildlife Crossing 35100 Not in Plans M       

14 Schall Flats #3 
Wildlife Crossing 36150 Not in Plans M       

15 Schall Flats #4 
Wildlife Crossing 37400 Not in Plans M       

  STOCK PASS     
(NOT IN MOA) - 37600 F           

37500 mm (41 yd) x 2400 
mm (2.6 yd) x 2400 mm (2.6 

yd) 

16 
Jocko/Spring creek 

Fish & Wildlife 
Crossing 38100 38000         M,F   

12000 mm (13.1 yd) x 
30000 mm (32.8 yd) (MOA 

recommends 12' min. 
height) 

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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TYPE 
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MOA Crossing name
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ID 
Design Plans 
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Dimensions 

17 Ravalli Curves #1 
Wildlife Crossing 41150 Not in Plans M      

 

18 Ravalli Curves #2 
Wildlife Crossing 41200 Not in Plans M      

 

  NEW STRUCTURE 
(NOT IN MOA) 

- 39609           F 

21950 mm (24 yd) x 7315 
mm (8 yd) x 3048 mm (3.7 
yd) (concrete) 21950 mm 

(24 yd) x 6858 mm (7.5 yd) 
x 4775 mm (5.2 yd) (steel)

  NEW STRUCTURE 
(NOT IN MOA) 

- 40520           F 

25610 mm (28 yd) x 7315 
mm (8 yd) x 3048 mm (3.3 
yd) (conctrete) 25610 mm 

(28 yd) x 6858 mm (7.5 yd) 
x 4775 mm (5.2 yd) (steel)

19 
Jocko Side Channel 

Fish & Wildlife 
Crossing 42460 42123         M,F   

12000 mm (13.1 yd) x 
30000 mm (32.8 yd) (MOA 

recommends 12' min. 
height) 

20 
Ravalli Curves #3 
SMALL MAMMAL 

Crossing 42600 42600 M,F           

27500 mm (30 yd) x 1200 
mm (1.3 yd) x 1800 mm(1.9 

yd) 

21 
Ravalli Curves #4 
SMALL MAMMAL 

Crossing 42730 42700 M         F 

24000 mm (26.2 yd) x 2050 
mm (2.2 yd) x 1500 mm(1.6 

yd) 

22 
Ravalli Curves #5 
SMALL MAMMAL 

Crossing 43050 42940 M,F           

27500 mm (30 yd) x 1800 
mm (1.9 yd) x1200 mm(1.3 

yd) 

23 Copper Creek Fish 
& Wildlife Crossing 

43200 43123         M F 

18290 mm (20 yd) x 7315 
mm (8 yd) x 3048 mm (3.3 
yd) (concrete) 18290 mm 

(20 yd) x 7747 mm (8.4 yd) 
x 5105 mm (5.5 yd) (steel)

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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TYPE 
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MOA Crossing name

MOA 
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ID 
Design Plans 
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Dimensions 

24 Ravalli Hill Wildlife 
Crossing (x2) 

45955 45946.8 M         P 

 31200 mm (43.1 yd) x 3500 
mm (3.8 yd) x 7315 mm (8 
yd) (concrete) 31200 mm 
(34.1 yd) x 7417 mm (8.1 
yd) x 5156 mm (5.6 yd) 

(steel) 

  NEW STRUCTURE 
(NOT IN MOA) 

- 46371           P 

 39000 mm (42.6 yd) x 3500 
mm (3.8 yd) x 7315 mm (8 
yd) (concrete) 39000 mm 
(42.6 yd) x 7417 mm (8.1 
yd) x 5156 mm (5.6 yd) 

(steel) 

25 Pistol Creek #1 
Wildlife Crossing 

49800 49855.7 M         P 

 40000 mm (43.7 yd) x 3500 
mm (3.8 yd) x 7315 mm (8 
yd) (concrete)  40000 mm 
(43.7 yd) x 7417 mm (8.1 
yd) x 5156 mm (5.6 yd) 

(steel) 

26 Pistol Creek #2 
Wildlife Crossing 

50100 50163 M         P 

 40000 mm (43.7 yd) x 3500 
mm (3.8 yd) x 7315 mm (8 
yd) (concrete)  40000 (43.7 
yd) x 7417 mm (8.1 yd) x 
5156 mm (5.6 yd) (steel) 

27 
Sabine Creek Fish 

and Wildlife 
Crossing 51760 51784.7 M,P           

14700 mm (16 yd) x 7320 
mm (8 yd) x 3905 mm (4.2 

yd) 

28 Mission Creek 
Crossing 52890 52864         M,P   

40000 mm (43.7 yd) width 
unk.  MOA recommends 

min. 12' height 

29 
Post Creek 

Drainage # small 
mammal crossing 54400 54443.2 M,P           

31000 mm (33.9 yd) x 2100 
mm (2.2 yd)  

30 

Post Creek 
Drainage #2 Fish & 

Small Mammal 
Crossing 55000 55056.6 M,P           

19600 mm (21.4 yd) x 7320
mm (8 yd) x 4750 mm (5.1 

yd) 

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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TYPE 
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Dimensions 

31 

Post Creek 
Drainage #3 Fish & 

Small Mammal 
Crossing 55500 55506 M,P           

22100 mm (24.1 yd) x 7320 
mm (8 yd) x 4750 mm (5.1 

yd)  

32 

Post Creek 
Drainage #4 Fish & 

Small Mammal 
Crossing 55900 55998.4 M,P           

19600 mm (21.4 yd) x 7320 
mm (8 yd) x 3905 mm (4.2 

yd) 

33 
Post Creek 

Drainage #5 Fish & 
Wildlife Crossing 56160 56183.1 M,P           

39500 mm (43.1 yd) x 1800 
mm (1.9 yd) x 1200 mm (1.3 

yd)  

34 
Post Creek 

Drainage #6 Fish & 
Wildlife Crossing 56520 56556.6 M,P           

31500 mm (34.4 yd) x 2400 
mm (2.6 yd) x 2400 mm(2.6 

yd)  

35 
Post Creek 

Drainage #7 Fish & 
Wildlife Crossing 59180 59212.2 M,P           

29500 mm (32.2 yd) x 1800 
mm (1.9 yd) x 1200 mm (1.3 

yd)  

36 

Post Creek 
Drainage #8 Fish 

& Wildlife 
Crossing 59740 59755.5 M,P           

31500 mm (34.4 yd) x 
1800 mm (1.9 yd) x 1200 

mm (1.3 yd)  

37 
Ronan Canal #1 
Fish & Wildlife 

Crosssing 77300 77400 M,P           

8500 mm (9.2 yd) x 3000 
mm (3.2 yd)  

38 
Ronan Canal #2 
Fish & Wildlife 

Crosssing 78300 78365 M,P           

8500 mm (9.2 yd) x 3000 
mm(3.2 yd)  

39 
Mud Creek 

Tributary Fish & 
Wildlife Xing 80160 Not in Plans M      

 

40 Mud Creek #1 Fish 
& Wildlife Crossing 80950 80954 & 80960         M, P   

12800 mm (13.9 yd) x 4200 
mm (4.5 yd) (x 2 xings) 

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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Dimensions 

41 Mud Creek #2 Fish 
& Wildlife Crossing old hwy 93 UNKNOWN         M, P   

12800 mm (13.9 yd) x 4200 
mm (4.5 yd)  

42 Polson Hill Wildlife 
Crossing 

91700 91670 M         F 

31700 mm (34.6 yd) x 3658 
mm (4 yd) x 7315 mm (8 yd) 

(concrete) or 31700 mm 
(34.6 yd) x 4191 mm (4.5 
yd) x 7468 mm (8.1 yd) 

(steel) 

KEY:  CSP = Corrugated Steel Pipe  RCB = Reinforced Concrete Box  CSPA = Corrugated Steel Pipe Arch   

RCPA = Reinforced Concrete Pipe Arch  M = in the Memorandum of Agreement  P = in the Preliminary Plans 

F = in the Final Plans 
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14.  APPENDIX E:  TRACK BED LOCATIONS 

The figure below shows approximate locations of sand track beds installed in 2003 in the Evaro region of the US 93 study area. The 
continuous black line represents the highway, while each short black line represents a 100 m long bed that was placed randomly (with 
respect to the length and either side of the stretch of road originally planned for contiguous fencing with crossing structures) to obtain 
a representative sample of deer and bear movements across the area to be fenced.  Brackets encompass track beds monitored in 2003-
2005; data from this subset of track beds were extrapolated across the area to be fenced to estimate total preconstruction crossings.  
Beds outside the brackets were dropped from monitoring after 2003 when fencing plans were shortened and data from these beds no 
longer pertained to deer and bear movements within the area to be fenced (however beds EV2, EV7 and EV8 outside the white 
brackets were monitored in order to bolster the dataset used to assess possible track bed avoidance behaviors).  Original map source:  
Jones and Jones (2002a).   

 
Figure E-1 
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The figure below shows approximate locations of sand track beds installed in 2003 in the Ravalli Curves region of the US 93 study 
area.  Each short black line represents a 100 m long bed that was placed randomly (with respect to the length and either side of the 
stretch of road originally planned for contiguous fencing with crossing structures) to obtain a representative sample of deer and bear 
movements across the area to be fenced.  These data were then extrapolated across the entire area to estimate total preconstruction 
crossings.  Original map source:  Jones and Jones (2002a).   

 

 
Figure E-2 
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The figure below shows approximate locations of sand track beds installed in 2003 in the Ravalli Hill region of the US 93 study area.  
Each short black line represents a 100 m long bed that was placed randomly (with respect to the length and either side of the stretch of 
road originally planned for contiguous fencing with crossing structures) to obtain a representative sample of deer and bear movements 
across the area to be fenced.  Brackets encompass track beds monitored in 2003-2005; data from this subset of track beds were 
extrapolated across the area to be fenced to estimate total preconstruction crossings; these data were then extrapolated across the entire 
area to estimate total preconstruction crossings.  Beds outside the white brackets were dropped from monitoring after 2003 when 
fencing plans were shortened and data from these beds no longer pertained to movements within the area to be fenced.  Original map 
source:  Jones and Jones (2002a). 

 

 
FigureE-3 
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15.  APPENDIX F:  DEER AND BEAR TRACKING DATA SUMMARY 

 

Table F-1:  Track beds monitored in each area and each year, the actual length of each bed in meters, and the total number of “certain” deer crossings 
recorded each year of track bed monitoring.   

Table 19 

Evaro Ravalli Curves Ravalli Hill 
BED LENGTH 2003 2004 2005 BED LENGTH 2003 2004 2005 BED LENGTH 2003 2004 2005
EV10 87 20 15 17 RC1 87 21 18 20 RH1 100 16 26 9 
EV11 98 33 22 24 RC10 99 10 6 2 RH2/3 200 12 15 18 
EV12 97 40 33 20 RC11/12 194 60 24 31 RH4 100 6 3 3 
EV13/14 218 8 37 23 RC13 99 18 1 0 RH5 100 2 5 11 
EV15/16 216 10 23 15 RC14 100 11 0 10 RH6 100 8 36 56 
EV17 99 2 12 2 RC15 100 5 9 6 RH9A 100 19 2 15 
EV18 99 30 31 7 RC16 96 5 13 8        
EV2 101 15 40 22 RC17/6A 207 12 11 15           
EV7 87 9 11 11 RC18 99.2 18 15 4         
EV8 91 11 29 24 RC19 103 8 9 2           
EVPE 91 12 11 5 RC2 101 21 14 35           
EVPW 91 17 17 11 RC20 97.8 3 3 5           
        RC3 89 23 7 47           
        RC4 93 50 35 68           
       RC5 101 41 19 57          
       RC7A 87 6 7 4           
        RC8/9 199 97 28 31           
TOTAL 1375 207 281 181 TOTAL 1952 409 219 345 TOTAL 700 63 87 112 
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Table F-2:  Track beds monitored in each area and each year, the actual length of each bed in meters, and the total number of “certain” black bear 
crossings recorded each year of track bed monitoring.   

Evaro Ravalli Curves Ravalli Hill 
BED LENGTH 2003 2004 2005 BED LENGTH 2003 2004 2005 BED LENGTH 2003 2004 2005 
EV10 87 2 1 0 RC1 87 0 1 0 RH1 100 8 0 1 
EV11 98 0 0 1 RC10 99 1 1 0 RH2/3 200 4 0 2 
EV12 97 0 3 0 RC11/12 194 1 3 1 RH4 100 1 2 0 
EV13/14 218 1 1 0 RC13 99 0 0 0 RH5 100 0 0 0 
EV15/16 216 0 1 0 RC14 100 1 1 0 RH6 100 0 0 0 
EV17 99 1 0 0 RC15 100 3 7 0 RH9A 100 0 0 0 
EV18 99 4 0 0 RC16 96 4 3 0        
EV2 101 8 3 3 RC17/6A 207 4 7 0           
EV7 87 5 4 1 RC18 99.2 1 3 0         
EV8 91 5 18 0 RC19 103 1 15 0           
EVPE 91 0 1 0 RC2 101 0 0 1           
EVPW 91 0 1 0 RC20 97.8 3 2 1           
        RC3 89 0 0 0           
        RC4 93 0 0 1           
       RC5 101 0 0 0          
       RC7A 87 2 1 3           
        RC8/9 199 1 1 0           
TOTAL 1375 26 33 5 TOTAL 1952 22 45 7 TOTAL 700 13 2 3 
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16.  APPENDIX G:  CONSTRUCTION AND MONITORING SCHEDULE 

 
a Plus 1 fish crossing 
b Plus 3 small mammal crossings 

 

Table G-1: Construction and Monitoring Schedule. 
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